

Document Updated against InRule v5.8.1

Document Updated against InRule for Salesforce v2.19.0

InRule does not upgrade this document after each Integration Framework release, please see release notes for individual versions if
the version that you are using does not match the versions listed above.

If you are working with earlier versions of any of the above products, the information in this document may not apply to you. Please
check to see if earlier documentation is available to cover your needs.

CONFIDENTIAL Any use, copying or disclosure by or to any other person than has downloaded a trial version of InRule or signed
an NDA is strictly prohibited. If you have received this document by any other means than a download or an email from an InRule
employee, please destroy it retaining no electronic or printed copies.

© Copyright 2024 InRule Technology, Inc.

InRule for Salesforce

Deployment Guide

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 2 of 111

Table of Contents

Table of Contents .. 2
1 Introducing InRule for Salesforce .. 4
2 Understanding your options .. 5

2.1 Salesforce – InRule SaaS .. 5
2.2 Salesforce – Self-hosted in Microsoft Azure .. 6
2.3 Salesforce - IIS On-Premises Rule Execution Service .. 6

3 Performing the Installation .. 7
3.1 Solution Overview .. 7
3.2 Gathering prerequisites ... 8
3.3 Deploying and Configuring Components ... 12

3.3.1 Catalog App Service .. 13
3.3.2 Rule Execution App Service for Salesforce .. 17
3.3.3 InRule for Salesforce App ... 25

Appendix A: Additional Resources ... 37
InRule’s Support Website .. 37
InRule’s Support Team ... 37
InRule’s ROAD Team .. 37
InRule Training Services ... 37

Appendix B: Anatomy of a Request for Execution of Rules .. 38
Appendix C: irX General Integration Concepts ... 39
Appendix D: Accessing Salesforce Directly from Rule Helper.. 40
Appendix E: Methods for Executing Rules with Salesforce .. 48

1 Adding a Lightning Button .. 48
2 Adding a Classic UI Button .. 53
3 Executing Rules from Apex or Lightning Web Components .. 56
4 Executing Rules from Apex Triggers ... 59
5 Executing Rules from Salesforce Flow .. 67
6 Executing Rules from REST Endpoint ... 71

Appendix F: Azure App Service Plan & Application Insights Configuration .. 72
Appendix G: InRule SaaS Portal Configuration .. 76
Appendix H: Named Credential Configuration .. 79

Setting up the Named/External Credentials .. 79
Providing Named Credential Access via Permission Set ... 82
Legacy Named Credential Configuration .. 84

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 3 of 111

Appendix I: Salesforce and Rule Execution Service Event Logging .. 87
Appendix J: New Releases and Upgrading Versions ... 95
Appendix K: License Management ... 101
Appendix L: Known Issues, Limitations and Troubleshooting .. 104

Performance .. 107

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 4 of 111

1 Introducing InRule for Salesforce

InRule for Salesforce enables rich rule integration with Salesforce. The solution is comprised of:

• irAuthor with irX for Salesforce – extension to irAuthor, InRule’s premium desktop rule
authoring tool

• InRule App for Salesforce– available from the Salesforce AppExchange
• Rule Execution Services for Salesforce - InRule SaaS, self-hosted in Azure, or other

This guide focuses on the deployment of the Rule Execution Services for Salesforce and corresponding
InRule Salesforce App to your environment. The InRule Salesforce App may be deployed directly from
the Salesforce AppExchange or from the Integration Framework zip file downloaded from the InRule
Support Site.

Before beginning this guide, you may first want to familiarize yourself with the irX for Salesforce product
by reading the irX for Salesforce Help Documentation. This irAuthor extension will allow you to author
rules against Salesforce entities and become familiar with the types of rules-driven processes that can be
implemented. After testing locally from your desktop using irVerify, the rules will be ready for execution
from Salesforce. At this point, this guide will become highly relevant for deploying the InRule solution and
services to establish the selected integration patterns.

This document also provides an addendum, Appendix E: Methods for Executing Rules from Salesforce
that discusses the different options available to you for running rules beyond what this Deployment Guide
covers. It is a good next step for implementers who are looking for advanced options for running rules.

Additional material is available on the Downloads section of our support website. Please see Appendix A:
Additional Resources for support website detail. To find what’s new, see Appendix J: New Releases and
Upgrading Versions.

This guide assumes that the reader has basic familiarity with Salesforce, irAuthor and irX for Salesforce.

• Important: Not all Salesforce environments support API access. However, InRule for
Salesforce requires a Salesforce instance that supports the API. If you attempt to connect
with an instance that does not support this access, you will receive an error when connecting
that contains information such as "The REST API is not enabled for this Organization." The
edition types that do NOT include API access are Contact Edition, Group Edition and
Professional Edition. Please refer to official Salesforce documentation for up-to-date
information as this list is subject to change.

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD
https://support.inrule.com/hc/en-us/categories/360005068551-Downloads
https://support.inrule.com/hc/en-us/categories/360005068551-Downloads
https://inruleintegrations.blob.core.windows.net/docs/5.7.0/irXForSalesforceHelp.pdf

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 5 of 111

2 Understanding your options

Salesforce is available only as an online SaaS offering, but the Rule Execution Service and Catalog
Service components of InRule for Salesforce can be hosted anywhere an IIS site can be deployed. This
guide assumes deployment in Azure, but an on-prem or VM environment can also be used if required.

The following sections describe which deployment scenario will be the most applicable depending on your
needs:

• 2.1 Salesforce – InRule SaaS
• 2.2 Salesforce – Self-hosted in Microsoft Azure
• 2.3 Salesforce – IIS On-Premises Rule Execution Service

The primary consideration for InRule SaaS vs self-hosted Azure generally depends on if your
organization is already setup to manage an Azure subscription and services.

• If your organization does not have an Azure subscription, this can be compelling rationale to
go with InRule SaaS and forgo the overhead of Azure management and deployment.

• If your organization has an Azure subscription, it does not exclude you from choosing InRule
SaaS, but it may indicate that your IT department has requirements or preferences for self-
managed Azure solutions.

Either way, this guide will provide you with the information to help determine which InRule configuration
will best suit your needs, including Government Cloud and other considerations.

2.1 Salesforce – InRule SaaS

InRule for Salesforce is now available via InRule SaaS, in which case many of the deployment steps in
this document are not applicable and will be managed for you. This is the most stream-lined deployment
available to both qualified Trial users and licensed customers.

1. Important: If you are new to InRule and do not have an InRule SaaS subscription, you can
request a free trial here and specify that you would like to integrate it with your Salesforce
instance.

With InRule SaaS, the deployment steps are significantly reduced by eliminating the need to install the
InRule’s App Services in Azure. This narrows the deployment focus down to irAuthor with irX for
Salesforce and the InRule for Salesforce App from the Salesforce AppExchange. The main deployment
steps in this scenario are summarized as follows:

Deployment Step Installation Type

1. irAuthor with irX for Salesforce InRule installer via the InRule Support Site
2. Rule Execution Services for Salesforce *managed by InRule SaaS Support

3. InRule for Salesforce App Salesforce AppExchange

All information to set up the connectivity between Rule Execution Services hosted by InRule SaaS and
your organization’s Salesforce instance can be managed through the InRule SaaS Portal. The following
configuration is what will be managed through the Portal. More information can be found in Appendix G:
InRule SaaS Portal Configuration.

https://inrule.com/inrule-deployment-options/saas-our-cloud/
https://inrule.com/inrule-for-salesforce-trial/
https://support.inrule.com/
mailto:support@inrule.com
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 6 of 111

Entered by users in the SaaS Portal – configuration information for the Rule Execution App Services

• Service account credentials for Salesforce, including that account’s API security token – used to
allow the InRule SaaS-hosted Rule Execution Service to connect to Salesforce.

• Salesforce Connected App Consumer Key and Consumer Secret information -- used to allow the
InRule SaaS-hosted Rule Execution Service to connect to Salesforce.

Provided to users in the SaaS Portal – configuration information for the InRule Salesforce Package:

• Rule Execution App Service endpoint URL – used for allowing Salesforce to make requests out to
the Rule Execution App Service

• Rule Execution App Service access credentials -- used for allowing Salesforce to make requests
out to the Rule Execution App Service

The net effect of an InRule SaaS deployment is that after the above pre-requisites are met, you get to
skip ahead to Section 3: Configuring the InRule for Salesforce App. Beyond this initial setup the
remainder of the guide will be beneficial for detailing advanced rule execution methods and
troubleshooting.

2.2 Salesforce – Self-hosted in Microsoft Azure

The suggested setup is to install InRule using a Platform-As-A-Service (PaaS) model on Microsoft Azure.
This document discusses the following three components:

1. Catalog App Service and Azure SQL Database
2. Rule Execution App Service for Salesforce
3. InRule Decision Client package for Salesforce

Section 3 of this document, Performing the Installation: In Azure, provides a complete walkthrough for
setting up each of these components.

Appendix B: Anatomy of a Request for Execution of Rules Diagram contains a more complete diagram
depicting how a standard request navigates through components.

2.3 Salesforce - IIS On-Premises Rule Execution Service

If for any reason you cannot use the Azure App Service, the Rule Execution Service and Catalog Service
can also be installed in an on-prem environment, or in any IaaS server configured with IIS. The following
three components are required:

1. Catalog Web Service and Database
2. Rule Execution Web Service for Salesforce
3. InRule Decision Client package for Salesforce

Installation Documentation and InRule Installer, which will be used to install the Catalog Service, are
available on our support website’s downloads section and provide instructions for setting up the catalog.

Detailed installation steps are not included with this guide, but the InRule.Salesforce.WebService.zip
package in the RuleExecutionAzureService folder can also be deployed in an on-prem environment. This
is a Web Deploy package, so it can be deployed via MSDeploy or by copying the contents to an IIS Site.
Alternatively, an MSI is also provided, located in the same file directory as the aforementioned Web

https://support.inrule.com/

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 7 of 111

Deploy package. This can provide a more streamlined installation process for on-prem Rule Execution
services.

3 Performing the Installation

This section discusses the steps needed to integrate InRule with Salesforce. Using this scenario InRule
components are hosted on Microsoft Azure.

3.1 Solution Overview

This guide will provide the instructions for setting up all the components below:

Catalog App Service and Azure SQL Database
A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution App
Service. This Catalog Service will be hosted as an Azure App Service. The back end of the Catalog
Service utilizes an Azure SQL Database for retrieval and persistence of Rule Applications.

Rule Execution App Service for Salesforce
The Rule Execution App Service is responsible for loading Salesforce entity data, executing rules against
loaded data, and responding to Salesforce with rule execution results.

InRule for Salesforce App
The InRule for Salesforce App contains Apex classes, as well as custom settings and objects. It is
configured to communicate with the execution service over REST.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 8 of 111

3.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in
the next section.

Optional Resource Files
The following file can be downloaded from our support website’s downloads section:

• InRule for Salesforce.zip

This zip file contains several resources that can be used in advanced deployments. A typical installation
does not require the use of these resources, as all the required deployment assets are available online.
However, this zip file provides an alternative means of accessing the InRule for Salesforce assets.

After you have downloaded this file, but before extracting, make sure that you go to the file properties for
the zip and select Unblock. If the zip file is not unblocked before extracting, the deployment scripts will
not be able to execute successfully.

After unblocking the zip file, extract the contents to a working folder. When you are finished, you should
have a directory structure that looks like this:

│ InRule for Salesforce.zip
│
└───InRule for Salesforce
 │ readme.txt
 |
 ├───RuleApplications
 │ SalesforceRules.ruleappx
 |
 ├───RuleExecutionAzureService
 │ azuredeploy.json
 │ azuredeploy.parameters.json
 │ InRule.Salesforce.WebService.zip
 │
 └───RuleHelperDeployment
 InRule.Salesforce.RuleHelper.dll
 ...(many other supporting files)

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 9 of 111

Rule Authoring Environment
A rule authoring environment is used to upload a Rule Application to your Catalog Service. A rule
authoring environment is a machine or virtual machine where irAuthor has been installed with the irX for
Salesforce extension. If you followed the instructions outlined in irX for Salesforce Help Documentation,
then you should already have a rule authoring environment available to you.

We have made it a point to call out the rule authoring environment separately because it is important to
be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX
for Salesforce license to activate the related components in the authoring environment. If you are a
system administrator who does not intend to perform rule authoring activities after the deployment is up
and running, you can either chose to borrow an environment from someone who will use a rule authoring
environment, or you will want to be sure to deactivate your license when you’re finished with your
deployment responsibilities.

Administrative Accounts

Salesforce Service Account

You will need an existing or new Salesforce account to use as a service account to connect to the
Salesforce API. This account will be used by the rule execution service to load and save data from
Salesforce required by rules. This account does not need to be a System Administrator account, but it will
need permissions to use the Salesforce API and interact with entities used by rules.

Security Token
If the account does not already have an API token, then log into the Salesforce portal and go to the user
Settings from the avatar menu in the top-right. On the sidebar that appears, navigate to My Personal
Information Reset My Security Token. On the page that appears, click the ‘Reset Security Token’, and
you should receive an email within a few minutes that contains an API token.

Important: Security tokens are, in most scenarios, required. They are only optional in scenarios
when the account attempting to authenticate is connecting from a Trusted IP address. Trusted IPs can be
set globally, meaning any user that connects from an IP in the trusted range will be regarded as trusted,
or on the Profile level, meaning that only users assigned to the given Profile will be regarded as trusted
when connecting from an IP that falls in the trusted range. But regardless of how Trusted IPs are
configured, if the account in question does not fall in a configured Trusted IP range, it must have a
security token set.

If trusted IP ranges are enabled for this account, you will not see the ‘Reset My Security Token’ button. If
this is the case, simply leave this value blank where required later.

https://inruleintegrations.blob.core.windows.net/docs/irXForSalesforceHelp.pdf

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 10 of
111

Other Credentials

Administrative Password to use for Catalog Service: You should decide what username and
password you want to use for administrative privileges within Catalog. You will use this password when
following the referenced catalog setup guide and will need to provide it when deploying the Execution
Service.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the
reader to go through the process of utilizing the Catalog Manager to change these credentials to be more
secure.

API Key for the Rule Service: The rule execution service is protected using an API key. For SaaS
deployments, your API key can be found in the InRule Portal by navigating to “Provisioned Resources”
and finding the “Execution” resource. For Self-hosted deployments, you can generate your own key, but it
is important to save this key as it will be used when configuring Salesforce later.
Administrative Password to use for SQL Server: You should decide what username and password
you want to use for administrative privileges on the SQL Server. You will use this password when
following the referenced catalog setup guide.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to
connect to the SQL Server Database. In a more secure environment, a separate SQL User should be
created that only has access to the single database needed by the catalog. It is up to the reader of this
document to go this more secure route.

Administrative Login and Password for Microsoft Azure: You must have a username and password
that will be used to perform administrative tasks within Microsoft Azure.

InRule Azure License File

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 11 of
111

You will need a special .xml file used for licensing InRule in an Azure cloud environment. This may have
been provided with your InRule Welcome package. You can contact support@InRule.com if you have
questions about where to get your license file.

Deciding resource names
The following worksheet can be used to decide what to name Azure resources as you go through this
Guide.

Many of these resources must have names that are unique in the world; they are hosted on Microsoft
Azure and are given domain names that match. We recommend creating a “Base” name that does not
exceed 14 characters. We recommend encoding an organization name, an application name, and an
environment name into this ‘Base’ name. For Example:

{ApplicationAbbreviation}{OrganizationAbreviation}{EnvironmentAbreviation}

MyAppInRuleDev
12345678901234

You can choose to follow this convention or invent your own.

Resource and Description

Example Name

Base Name

MyAppInRuleDev

Azure Resource Group Name

MyAppInRuleDevResourceGroup

Azure SQL Server Name
must be lower case

myappinruledevsqlserver

Catalog Database Name

MyAppInRuleDevCatalogDb

Catalog App Service Name

MyAppInRuleDevCatalogService

Rule Execution App Service Plan Name

MyAppInRuleDevRuleExecutionAppServicePlan

Rule Execution App Service Name

MyAppInRuleDevRuleExecutionAppService

Enabling OAuth Username-Password Flow
Starting with the Summer ’23 Salesforce update, new Salesforce instances now have the Allow OAuth
Username-Password Flows setting disabled. In order for InRule to authenticate back to Salesforce, you
will need to verify that this setting is enabled.

To begin, navigate to the OAuth and OpenID Connect Settings page by using the quick find search box.
Once there, find the Allow OAuth Username-Password Flows toggle and enable it.

mailto:support@InRule.com

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 12 of
111

3.3 Deploying and Configuring Components

There are two primary paths for deploying the required InRule components:

1. App Stores: Azure Marketplace and Salesforce AppExchange - (Recommended) Provides a
straightforward, UI-driven process that simplifies deployment and eliminates the need to
individually deploy both the Catalog App Service and the Rule Execution App Service. Both the
Azure Marketplace (for InRule App Services) and the Salesforce AppExchange (for the InRule for
Salesforce App) must be utilized to deploy their respective InRule Apps (see matrix below).

2. Manual Deployment using ARM Templates and Scripts: Manually deploy Azure Resource
Management (ARM) Templates through either the Azure Portal, PowerShell, or Azure CLI; then
deploy the InRule for Salesforce App via a versioned package link to your Salesforce
environment.

InRule components by deployment path:

InRule Component App Stores Manual Deployment

Catalog App Service

Azure Marketplace

ARM Template

Rule Execution App Service for
Salesforce

ARM Template

InRule for Salesforce App Salesforce AppExchange Versioned Package Link

https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrule-dynamics-azure?tab=Overview
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD
https://github.com/InRule/AzureAppServices
https://github.com/InRule/AzureAppServices
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/inruletechnology-1043512.inrule-salesforce?tab=Overview
https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager
https://github.com/InRule/AzureAppServices/tree/master/Salesforce
https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 13 of
111

While deploying from Azure Marketplace and AppExchange is generally recommended for initial
environments; in advanced scenarios the manual deployment resources can be leveraged for multi-
environment DevOps automation. Also note, choosing either path does not require you to stay on the
same path across all components; as the deployment options can be mixed and matched as situations
warrant.

The following sections are primarily focused on the manual deployment path for the Catalog App Service
and Rule Execution App Service for Salesforce, while focusing on the AppExchange deployment path for
the InRule for Salesforce App. However, there are still relevant config and testing steps which apply to
both paths. For Marketplace deployments, you may skip the manual deployment steps and go directly to
the relevant sub-sections for license management, configuration, and setup verification.

3.3.1 Catalog App Service

Installing the Catalog App Service
The first major objective for a Salesforce implementation is the deployment of a Catalog service to
Microsoft Azure.

During this process, you will be creating:

• An Azure SQL Server Database
• An Azure App Service to host the InRule Catalog in the Azure cloud

When you are finished, you should be able to connect to this app service from a locally installed copy of
irAuthor, and successfully save a RuleApp to the catalog.

The full process of installing the Catalog in Microsoft Azure is outlined in the documentation found on the
InRule AzureAppServices GitHub, which can be found here:

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

Please ensure you are installing the Catalog service, not the irServer Rule Execution Service, which is
found on the same page and is not compatible with Salesforce.

Testing the Catalog App Service
At the conclusion of the installation process outlined above you should have a Catalog URI, Username,
and Password to use to connect to the catalog service. We’ll now verify that we can appropriately connect
to it.

To begin, open up irAuthor. By default, the Catalog App Service is deployed out with a test rule app
already available on it. We can attempt to access this rule app to verify that everything is working
correctly.

1: From the irAuthor launch screen, navigate to File -> Open -> Open from Catalog

https://github.com/InRule/AzureAppServices/blob/master/README.md#ircatalog-and-ircatalog-manager

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 14 of
111

2: Choose Add Catalog, enter connection information for the Catalog Server that
you deployed, and then select Use This.

3: Select the SalesforceRules rule app and hit Open

If the SalesforceRules rule app is there and opens without issue, then your catalog app service is good to
go.

If the rule app does not appear as an option to open after connecting to the catalog, you can try the below
steps as an alternative method of testing:

4: Download the SalesforceRules sample rule app.

5: Navigate to this file in your rule authoring environment and double click on it,
this will open the file with irAuthor.

https://inruleintegrations.blob.core.windows.net/docs/5.7.0/SalesforceRules.ruleappx

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 15 of
111

3: Save the Rule Application by choosing File Save As Save to Catalog

6: Choose Add Catalog, enter connection information for the Catalog Server that
you deployed, and then select Use This.

7: Save with the name SalesforceRules

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 16 of
111

Save the Rule Application to the Catalog using the name of SalesforceRules. You must also be sure to
provide the label, which needs to match the label configured on the Catalog Service.

At this point, if you can click OK without an error, you have successfully saved the SalesforceRules Rule
App to the new Catalog that you have created.

If you have any trouble getting to this point, it is advised that you resolve any issues with the Catalog
before attempting to continue.

Upload License File
Next, you’ll need to upload a license file to the web app service in order for the Rule Execution App
Service to properly function. The simplest way to upload the license file is via the Azure App Service
Editor. Alternatively, you can deploy the license file via FTP. Walkthroughs of both these approaches can
be found in Appendix K: License Management.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 17 of
111

3.3.2 Rule Execution App Service for Salesforce
Next, we will deploy the InRule Rule Execution service as an Azure App Service, along with all its Azure
resource dependencies. To make this process easier, we will be using an Azure Resource Manager
(ARM) template, which allows us to deploy and configure all the Azure resources the Rule Execution
Service relies on.

There are a number of methods for deploying an ARM template; this documentation will detail two: via
Azure CLI and via PowerShell.

Alternatively, while this document does not provide a walkthrough of it, the ARM template provided is
configured to work with Azure Portal deployment. For an overview of how to leverage ARM deployment
through the Azure Portal, reference Microsoft’s documentation: Deploy resources with ARM templates
and Azure portal and navigate to the section titled “Deploy resources from custom template”.

You can navigate directly to the Azure Portal page for deploying an ARM template at this link: Custom
deployment - Microsoft Azure.

1: Locate azuredeploy.parameters.json
Before deploying the ARM template, we need to define certain parameters.

The required azuredeploy.json and azuredeploy.parameters.json files can be downloaded here -
AzureAppServices/Salesforce at master · InRule/AzureAppServices · GitHub.

Alternatively, they can be located within the InRule for Salesforce.zip file downloaded in Section 3.2:
Optional Resource Files.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://portal.azure.com/#create/Microsoft.Template
https://portal.azure.com/#create/Microsoft.Template
https://github.com/InRule/AzureAppServices/tree/master/Salesforce

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 18 of
111

2: Update parameters
Before completing this section, make sure you have the following credentials:

• Salesforce Credentials
• Salesforce API Security Token
• Salesforce Connected App
• InRule Catalog credentials

Open the file with your text editor of choice and edit the parameters listed below

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 19 of
111

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 20 of
111

1. appServiceName Provide a name for the Azure App Service that the Rule Execution Service will run on.

Note, by default, an App Service Plan will be created by the ARM template. The App
Service Plan will follow the naming convention of the App Service name you provide here,
with “Plan” appended to the end (ex. appServiceNamePlan). If you wish to deploy your app
service to an already existing App Service Plan rather than create a new one, or for more
information on the necessary configurations for the App Service Plan, reference Appendix
F: Azure App Service Plan and Application Insights Configuration

2. catalogUri The URI for the Catalog Service that will be used
Example:
https://myappinruledevcatalogservice.cloudapp.net/service.svc

3. catalogUser Username for Catalog Service, default value is ‘admin’.

4. catalogPassword Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

5. ruleAppLabel Optionally supply a default label used by the execution service to identify the ruleapp
version to run.

6. sfLoginUrl The default for this is set to https://login.salesforce.com/services/oauth2/token, but you can
change this to the relevant URL for your instance if you are deploying to something like a
sandbox instance

7. sfUsername Salesforce username for the service account used to connect from the execution service to
the Salesforce API

8. sfPassword Password for the Salesforce service account

9. sfSecurityToken API token for the Salesforce service account. Security tokens are required unless the
service account will be connecting from an IP address that falls in a trusted IP range
configured in Salesforce.

10. sfConsumerKey OAuth consumer key for the connected app

11. sfConsumerSecret OAuth consumer secret for the connected app

12. executionServiceApiKey Api key used to secure the rule service. This same api key will need to be provided to
Salesforce during configuration

13. inRuleVersion (To deploy most
modern version, leave as default
value)

This parameter allows the user to configure what version of the InRule Rule Execution
Service they wish to deploy. By default, this parameter will be set to the most modern
version.

14. appServicePlanName (If you wish
to override the default value)

Provide a name for the Azure App Service Plan. If you leave this value blank it will be
derived as the App Service name you provide above, with “Plan” appended to the end (ex.
appServiceNamePlan)

Note, by default, an App Service Plan will be created by the ARM template. If you wish to
deploy your app service to an already existing App Service Plan rather than create a new
one, or for more information on the necessary configurations for the App Service Plan,
reference Appendix F: Azure App Service Plan and Application Insights Configuration

15. createOrUpdateAppServicePlan By default, this value is set to true, and an App Service Plan will be created by the ARM
template. If you wish to deploy your app service to an already existing App Service Plan
rather than create a new one, set this value to false and reference Appendix F: Azure App
Service Plan and Application Insights Configuration.

16. appInsightsResourceName

(If you wish to create a new AI
resource)

If you want to use Application Insights as a log sink in addition to the app service logging
already enabled, but do not already have an Insights resource that you want to use, specify
a name for a new resource here. Specifying a value for this parameter will create a new
Application insights resource with the given name and populate the instrumentation key app
setting on the app service with the key from this new resource. If you provide a value for
this parameter, do not provide a value for appInsightsInstrumentationKey.

17. appInsightsInstrumentationKey

(If you wish to use an existing AI
resource)

Provide an Instrumentation Key if you have an existing App Insights resource you'd like to
use for logging and telemetry. If you are configuring this in a nonstandard azure
environment (such as Azure Government), please additionally provide an App Insights
Connection String. Otherwise, leave this value blank and provide a value for the
'appInsightsResourceName' parameter, which will create the resource for you. For more
information on the logging view Rule Execution Service Event Log.

https://myappinruledevcatalogservice.cloudapp.net/service.svc
https://login.salesforce.com/services/oauth2/token

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 21 of
111

18. appInsightsConnectionString
(If you wish to use an existing AI
resource in a non-standard Azure
environment)

Only override the default value here if you have an existing App Insights resource you'd like
to use, AND you need to use a non-standard connection string. If you need to supply your
own connection string, be sure to set that value here, as well as providing your
instrumentation key in the appInsightsInstrumentationKey parameter. If you want this
template to manage the App Insights resource for you, or only need to provide an
instrumentation key, leave this value as the default and provide values for
appInsightsResourceName or appInsightsInstrumentationKey instead.

Additionally, for any consideration about using app insights or setting it up in a non-
standard Azure environment view Appendix G: Azure Application Insights Configuration

Once you have finished configuring your parameters, save the completed parameters file and keep a
spare copy on hand for future upgrades or automation.

3: Option 1: Deploy ARM Template with Azure CLI
Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The
following will detail how to use the Azure CLI to deploy the ARM template (Note, this section assumes
Azure CLI has already been installed):

3.1 Run Command Prompt or PowerShell

3.2 Navigate to the RuleExecutionAzureService folder

3.3 Enter “az login” to login into Azure

3.4 Enter your Azure admin credentials to login when prompted in the
new browser window opened

3.5 Select the appropriate subscription

If your Azure account has access to multiple subscriptions, you will need to set your active
subscription to where you create your Azure resources:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 22 of
111

3.6 Create Resource group

If you have not created a resource group yet, you will need to create one. You will need to define a
name and a geographic location for where to host the resource. This example uses Central US:

3.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

4: Option 2: Deploy ARM Template with PowerShell
(If you have already deployed the ARM template via Azure CLI in the section above, this section is not
necessary)

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The
following will detail how to use PowerShell to deploy the ARM template (Note, this section assumes Azure
PowerShell has already been installed):

1.1 Run PowerShell

1.2 Navigate to the RuleExecutionAzureService folder

1.3 Enter “Connect-AzureRmAccount” to login into Azure

1.4 Enter your Azure admin credentials to login when prompted in the
new browser window opened

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 23 of
111

1.5 Select the appropriate subscription

Upon logging in, your default subscription information will be displayed:

If this is not the subscription you want to deploy to, you can use the “Select-AzureRmSubscription”
cmdlet to change the targeted subscription. Just replace “SubscriptionNameHere” with the name of
the desired subscription:

4.6 Create Resource Group

If you have not created a resource group yet, you will need to create one. You will need to define a
name and a geographic location for where to host the resource. This example uses Central US:

4.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

5: Verify Setup
Navigate to the Azure portal and locate the deployed App Service

Ensure that all of the app settings are configured correctly for your setup

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 24 of
111

6: Upload License File
Next, you’ll need to upload a license file to the web app service in order for the Rule Execution App
Service to properly function. The simplest way to upload the license file is via the Azure App Service
Editor. Alternatively, you can deploy the license file via FTP. Walkthroughs of both these approaches can
be found in Appendix K: License Management.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 25 of
111

3.3.3 InRule for Salesforce App
At this point, all the Azure requirements are met. The execution service should be listening for incoming
communication from Salesforce. We must now setup the InRule for Salesforce App, which is done with a
managed Salesforce package. This can be done via either AppExchange or direct install link:

• Deploy latest version – navigate to the AppExchange, select ‘Get It Now’
• Deploy specific version – deploy the specific version associated to this Deployment Guide

(refer to cover page for version)

1: Install from AppExchange:
InRule for Salesforce can be installed from the Salesforce AppExchange marketplace. You can either
search for ‘InRule for Salesforce’ or go directly to the listing here:
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tHu000003EZBV When you get to the
listing page, you’ll need to select ‘Get It Now’ and choose the org you want to install the package in.

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tHu000003lKiV
https://login.salesforce.com/packaging/installPackage.apexp?p0=04tHu000003EZBV

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 26 of
111

Once you’ve selected an org and logged in, you’ll see a screen prompting you to install the package.
Select ‘Install for all users’ and hit ok. Installing this package installs all the components required for
integrating with InRule, including a configuration app, Apex classes, and custom settings and objects.
Once the installation is complete, you will need to configure the connection to the execution service.

2: Navigate to the InRule for Salesforce App
In Lightning view, select the Salesforce App Launcher button in the top right of the home screen and
select “View All”

Select the InRule App

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 27 of
111

This app provides useful information on how to get started using InRule for Salesforce, as well as quick
links to important configuration pages and logging.

3: Configure the InRule App

Connected App
First, create a new Connected App in Salesforce that is configured for OAuth authentication. Navigate to
Setup App Manager -> New Connected App

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 28 of
111

In the top right, select “New Connected App”

Fill out the Basic Information and configure OAuth authentication. The Rule Execution Service uses the
Username-Password authentication flow, so there is no callback URL, but because Salesforce requires
this field to be populated, enter any properly formatted URL; it will not be used. Also, be sure to add “Full
access” to the Selected OAuth Scopes. Any other values can be left as defaults.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 29 of
111

After saving, select the newly created Connected App and inspect the OAuth settings. Record the
Consumer Key and the Consumer Secret.

If your Salesforce instance was created after the Summer ’23 update, verify that you have enabled the
‘Allow OAuth Username-Password Flows’ toggle on the OAuth and OpenId Connect Settings page.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 30 of
111

Once you have completed these steps, you should have the token, consumer key and consumer secret,
all of which are required for authentication with Salesforce in addition to the username and password.

Named Credential

Next, we need to configure the Named Credential in Salesforce. This will be used by the Apex code to
make secure HTTP requests to the Rule Execution Service. See Appendix H: Named Credential
Configuration for instructions on how to set up your Named Credential.

Custom Setting

Once you have set up the Named Credential, navigate back to the InRule App and return to the
configuration tab. Under the “Custom Settings” header, click the “Custom Settings” shortcut link to
configure your default rule app name and logging level.

Click “Manage” next to the InRule label

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 31 of
111

Click “New”. Be sure to select the button above “Default Organization Level Value”, not the one below it.
The “New” button in the grid below will create a setting that is only applicable to a subset of users, but the
org level value will apply to all users. Scoped values can be used if desired, but be sure to at least define
an org level value.

Configuration
Form Fields

Rule App Name The name of the rule app that will be loaded by the Rule Execution Service when
running rules

App Domain
Cache

An integer that defines the amount of time in seconds that the InRule RuleHelper
will hold entities and collections in cache after querying for them. You can use the
“Clear Cache” button on the InRule Configuration page to clear the cache at any
time. Additionally, re-setting the configuration value to 0 will clear the cache.

Logging Level An integer that denotes the amount of information to log after rule execution
completes. This is a default value that will be used by all invocations of the
DecisionClient, but can be overridden in the calling script. Results are written to
the InRule_Log__c object. Values can be 0, 1, 2, or 3. *These log levels are
different than the log levels in the execution service which must be configured
independently*:

• 0 – disable all logging
• 1 – Logs errors and a minimal amount of information on successful

requests
• 2 – Logs errors, rule engine notifications, and rule engine validations
• 3 – Logs the same information as 2, but also includes JSON from the

HTTP request and response payloads, and additional trace
messages

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 32 of
111

Once configured, press Save.

4: Verify a successful deployment
Now that all of our resources are properly deployed and configured, we can test to ensure they’re all
working as they should be. Navigate back to the InRule App and then the Configuration tab once again.
Find the “Test Connectivity” button and press it. This button will make a mock request out to your Rule
Execution Service to verify that the InRule App and all related Azure resources are deployed and
configured properly.

If successful, you should get 3 green notifications like below:

5: Add the Run Rules button
As a part of the deployment of the InRule for Salesforce App, a new “Run Rules” Lightning component
has been installed. To add and configure this component to an entity or entities, you can follow the steps
below. This example uses the Account entity and the rule app you uploaded in the Testing the Catalog
App step, but this process should work for any entity, default or custom.

Alternatively, a sample Run Rules JavaScript button has now been installed for the account and contact
entities in the Classic (non-Lightning) UI. For guidance on how to add a Run Rules button in the Classic
UI, refer to Appendix E: Methods for Executing Rules from Salesforce.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 33 of
111

To begin, navigate to the entity you wish to add the button to. Note that you will have to add the button to
each entity individually.

Once on the desired entity page, find the settings icon in the top right corner and select Edit Page.

On the left-hand side of the page in the Lightning Components section scroll to the bottom of the page
until you find the InRule_RunRules in the Custom-Managed Section

Note: If you have not setup your Salesforce domain, you will see this message in the Custom-Managed
Section.

Simply follow the link to setup your domain. Once it has been set and you have logged in with the new
domain come back to edit page and you should now see the InRule_RunRules Lightning Component.

Drag the InRule_RunRules Lightning component to the desired location on the page view. Once you
have placed the component, click on it and a menu bar on the right will appear with two available
configuration values.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 34 of
111

The first configuration field, Rule Application Name, allows you to define a Rule Application to use for this
specific lightning component. Placing a value in this field will override the Rule Application you have
defined in your Custom Setting as the default. Leave this field blank to use the default configured Rule
Application.

The “Rule Set Name(s)” field accepts a comma delimited list of Rule Set names. Adding multiple rule sets
here will create multiple Run Rules buttons for each defined Rule Set on the page. Leaving this field blank
will leave only the singular “Run Rules” button, and this button will execute the Default Rule Set for the
given entity. The Default Rule Set is defined as the entity’s name + “DefaultRules.” For example, if you
are adding the Lightning component to the Account entity, the Rule Set name it will default to if this field is
left blank is “AccountDefaultRules.”

If no Rule Sets are defined, it will create 1 button that uses the default Rule Set for the entity. This button
will be generically titled “Run Rules”:

If one Rule Set is defined, will create 1 button that will use that defined Rule Set and will be titled with that
Rule Set’s name:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 35 of
111

If 2+ Rule Sets are defined, will create a button per Rule Set that will use the respective Rule Sets, each
button titled with the rule set they map to:

Once you have configured your Rule Sets, click save in the top right corner. It will prompt you to activate
this page to make it visible to your users, click activate.

Salesforce will now ask for the scope to activate the record page. Select the desired scope and click
Assign and then save on the subsequent prompt.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 36 of
111

Navigate back to the main entity page and the component should appear.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 37 of
111

Appendix A: Additional Resources

Having trouble? Relax! InRule offers many additional resources to help you get InRule correctly
integrated with Salesforce.

InRule’s Support Website

InRule’s support website can be found at http://support.inrule.com. If you do not already have a login for
our support site, the client administrator at your company has the ability to create an account for you. If
you are unsure of who your client administrator is, please email support@inrule.com.

InRule’s Support Team

The support team at InRule is available to help with any product support needs, troubleshooting
suspected product bugs, resolving any licensing issues, and free tele-hugs.

The best way to reach Support is through a detailed email sent to support@inrule.com.

You can also reach our support team by calling +1 (312) 648-1800.

InRule’s ROAD Team

ROAD Services agreements can be used to engage with ROAD, InRule’s professional services team.

ROAD can provide your organization with specialized consulting and tailored Architecture and Authoring
Guidance.

ROAD can assist with less common installation requirements, such as deployment to third party cloud
providers or integration with custom software.

ROAD can be contacted by emailing ROADServices@InRule.com

InRule Training Services

InRule offers the following interactive training services:

• Onsite and Remote attendance courses
• Hands-On multi-day courses with interactive labs
• Virtual Express training courses delivered online for rapid knowledge transfer

If you are interested in scheduling training services, please contact us at Training@InRule.com.

http://support.inrule.com/
mailto:support@inrule.com
mailto:support@inrule.com
mailto:ROADServices@InRule.com
mailto:Training@InRule.com

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 38 of
111

Appendix B: Anatomy of a Request for Execution of Rules

The steps below help to give a top-level understanding of how InRule is integrated with Salesforce.
Please note these steps are a simplification that does not cover topics like caching, iterations, and
multiple environments. It serves to show how the request moves through different Azure resources.

1. The DecisionClient in Salesforce is called by a button or event. This generates a call to the Rule
Execution App Service.

2. The Rule Execution App Service makes a request to the Catalog Service, asking for a copy of the
requested RuleApp.

3. The Catalog Service Queries its SQL Server based database for a copy of the requested RuleApp.

4. The SQL Server responds with the RuleApp.

5. The catalog service responds to the Rule Execution App Service with the RuleApp.

6. The RuleApp executes inside the Rule Execution App Service.

7. Optionally, the RuleApp has an opportunity to query Salesforce for additional data needed to execute
rules.

8. The RuleApp completed execution

9. The Rule Execution App Service relays the response to Salesforce, where the InRule for Salesforce
App synchronizes changes

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 39 of
111

Appendix C: irX General Integration Concepts

Runtime Mapping across Nested Relationships
Much like Salesforce, the InRule rule engine offers strong support for hierarchical and relational data.
Within a given Rule Application, data can be considered across parent-child relationships within a single
rule request. These relationships can take the form of Collections (1 - * relationships) or 1 – 1
relationships.

• Note: When N:N relationships are imported into InRule, they behave as 1:N Collection
relationships within the Rule Application.

In addition to the abilities of both products to handle relational data, both products also offer the ability to
declaratively configure “Entities” and “Fields”. Both products also allow for different strongly-typed Entities
and Fields to be accessed with loosely-typed SDK interfaces. Because of these inherent similarities and
flexible interfaces, it is possible to build a reusable mapping component that can convert any given graph
of loosely-typed Salesforce Entities to InRule Entities, and vice versa.

Controlling irVerify Behavior with Load, Save and Inactive Record
Settings
When working with an Entity Schema composed of many related Salesforce Entities, it is often useful to
have explicit control over which relationships are either automatically loaded or automatically considered
in change detection for persistence. If a relationship is skipped during the initial load routines, then it is
available to be conditionally populated later using rules.

In the irX rule authoring ribbon, there are two buttons that give the rule author the control to denote if a
relationship should be automatically loaded or saved excluded.

• Note: Automatic loading and saving is enabled by default for all relationships that are
imported from Salesforce. The rule author can opt-out of these automatic behaviors by
unselecting “Auto Load” or “Auto Save”. When these buttons are selected, metadata
attributes are written into the Rule Application for the given relationship. These metadata
attributes are used by the irVerify data loader when recursively loading data or detecting
changes for persistence.

• Important: If loading or saving is disabled for a given relationship, then it is also disabled for
all Entities that are children of that relationship.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 40 of
111

Appendix D: Accessing Salesforce Directly from Rule Helper

In the default Rule Execution setup, all relationships between Entity types must be established before
these entities can be used by the rule app. This behavior is intuitive, but it is not ideal for all business
problems. InRule for Salesforce provides a ‘Rule Helper’ assembly that can be used directly in a rule app
and allows rules to load, compare, and assign data that is not related in Salesforce before rules are
executed.

When to use the Query from Rules Approach
The query from rules approach adds value for the following business problems:

• The rules need to reference “lookup” information that may be in a list or set of Entities that are not
specifically related to the current Entity hierarchy

• The purpose of rules is to create new relationships between Entity instances that already exist in
Salesforce

• The rules need to compare many combinations of unrelated Salesforce Entities and produce
results about best possible matches or scores

• A custom filter is required when loading data for 1:N relationships

Working with Disconnected Fields when Loading and Saving Data
One of the most important integration concepts when loading Salesforce data from rules is the notion of
“Disconnected” Fields and Fields that have “Auto Load” and “Auto Save” disabled.

irX allows the rule author to explicitly control the “Auto Load” and “Auto Save” behaviors of Fields that are
connected to Salesforce.

The example below shows a Collection named CandidateProducts. Since the Collection is not marked
with a blue triangle, it is not considered to be attached to Salesforce.

• Important: Although Entity Fields and Collections may be “Disconnected” from Salesforce,
the types contained by the Collections can be set to types that were imported from
Salesforce.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 41 of
111

• Note: If a Field is added to the schema using irAuthor, then it will be disconnected from
Salesforce. If a Field has been imported from Salesforce using irX, then it can be
disconnected from Salesforce by clicking the “Disconnect Item” button in the irX ribbon.

• Important: Two additional settings appear in the irX ribbon that offer additional control over
automatic loading and saving behaviors for Fields that remain connected to Salesforce. In the
example below, both buttons are “lit up”, which denotes that the settings are enabled. By
default, automatic loading and saving is enabled for all Fields that are connected to
Salesforce.

Integrating the Rule Helper Component
InRule provides a sample rule application (SalesforceRules) that is already configured for RuleHelper
usage. You can simply edit this rule app, or, if you wish to integrate the Rule Helper into an existing rule
app, you can copy both the UDF Library “RuleHelper” and End Point ‘SalesforceHelper” from the
SalesforceRules rule to another rule application.

If you wish to manually create the UDF Library and End Point in irAuthor, follow the steps below.

1. Create a new rule app using the irX add-in for irAuthor.

2. Create a new “.NET Assembly Function Library” end point and bind the end point to the
InRule.Salesforce.RuleHelper.dll assembly. Select the SalesforceDriver class and then select the
methods that should be callable from rules. Edit the name of the end point to “SalesforceLib” or
similar. Select the methods from the SalesforceDriver that are needed for the Rule Application.
You do not need to select all the methods—only import the methods that will actually be used by
rules. Additional methods can always be imported later be revisiting the endpoint screen and
reloading the assembly.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 42 of
111

3. Add a User Defined Function library and set the name to “SalesforceHelpers” or similar. This

library will contain functions that the rules will call to query Salesforce.

4. Add a User Defined Function to the new library. The example below shows a UDF that will be
used to execute the QueryCollection method on the SalesforceDriver. Fill out the UDF with script
that will call a method on the SalesforceDriver.

• Note: The methods on the SalesforceDriver are designed to be reused for more than one
Entity type, Field, or set of Fields. The name of the Target Field or Collection should be
supplied as a string. When querying a Collection of results, an optional “where” clause can be
provided that will be forwarded to calls against the Salesforce SDK. In addition, an “order by”
clause can be provided to return sorted results.

• Important: This integration pattern relies on the “Context” object that is available from
irScript. The Context object returns information based on the context under which a given
UDF is executed. For example, when executing an Entity Rule Set, the Context.Entity returns
a reference to the Entity against which the current Rule Set is executing. The Context and its
child properties are passed to the SalesforceDriver so it has enough information to form calls
to Salesforce and map responses back to the InRule Rule Session.

• Note: The Context.FunctionLibraries property can be used to create calls to the .NET
assembly library methods, such as the methods imported in Step 5 above. The following
script example demonstrates how to use the Context object in irScript to form a call to a static
.NET method:

Context.FunctionLibraries.SalesforceDriver.QueryCollection(Context,
Context.Entity, collectionName, filter, orderBy, connectionString);

5. Rules can now be authored to execute methods on the SalesforceDriver. These methods can be

used to load Collections, single Entities, or single Fields from Salesforce based on conditional
logic within rules.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 43 of
111

• Important: The Target Collection in the sample rule is called “FamilyMembers”. This is a

Field that either does not exist in Salesforce (only for use in rules), or has been imported and
then “disconnected” from Salesforce using the “Disconnect Field” button, or has “Auto Load”
disabled.

• Note: Please see the following sections for more details on the creating the “filter” clauses
similar to the one used in this example.

Filtering Queries using the Where Clause Builder
When loading data from Salesforce during rule execution, it is critical that the rule author is able to author
logic to specify which Entity data to load. Using the RuleHelper, this is accomplished by allowing the rule
author to pass in a “filter” or “where” clause into the calls against the SalesforceDriver class.

During execution of the SalesforceDriver, the filter clause is parsed into an Abstract Syntax Tree (AST)
and then translated into SOQL (Salesforce Object Query Language) so it can be executed against the
Salesforce data. The filter clause is based on the InRule function syntax format.

• Note: The InRule function syntax format is used for the following reasons:

o The syntax rule format is consistent with the rule authoring experience used
throughout irAuthor

o This format can make good use of the InRule AST parser that is included as part of
irSDK

The diagram below depicts the logical flow of steps used by the SalesforceDriver and WhereClause
builder classes to query data from rules.

The diagram and notes below contain some additional information about forming the filter clause in a rule:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 44 of
111

• All the Field names that are used are the Salesforce friendly names (Salesforce Field Label) that
are used in the Rule Application. These names are mapped back to the Salesforce Field names
in the parser.

• String literals should be wrapped in single quotes, date literals should be wrapped in pound signs.

• Simple operators are supported to compare values, such as =, !=, >, < (ex. Age > 21, Name !=
‘Ralph’).

• Multiple conditions can be chained together using ‘and’ and ‘or’ keywords.

• The following keywords and operators are supported by the InRule AST parser and expression
tree translation code: =, <>, !=, +, -, *, /, or, and, xor, >, >=, <, <=, ^,

The filter expression also supports querying against related entities, simply by appending
the related entity name in front of the relevant query field. Querying against related entities requires that
all entities and fields queried in the relationship chain be imported into irAuthor.

In this example, we are populating a collection by querying the Contact entity, which is the “parent” entity
here. We are then applying a filter statement to return only contacts with related Cases that have a Web
Name of “Rogers.” Cases in this example is the “child” entity. Notice how the hierarchy of the related
entity down to field is denoted. If you wanted to drill down another layer to a “grandchild” entity (in this
example, an entity related to Case), it would be accomplished by simply continuing the chain from entity
to field. Below is an example of a “grandchild” case:

This example would return Accounts that have related Contacts with Cases that have a Web Name of
“Rogers.”  The filter expression can support querying in this manner up to 5 “layers” deep, not including
the initially queried entity. Put another way, you can have up to 6 total different related entities in a single
filter expression.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 45 of
111

The filter expression supports querying against multiple properties from different related entities. In the
below example, we are querying for Contacts with Cases that have Descriptions starting with “A” and also
have Leads with Names starting with “A.”

Ordering Query Results with the OrderByClauseBuilder
The SalesforceDriver class also supports the ability to control the order of the results returned from
Salesforce by passing in an optional “order by” clause. The order by clause can accept only a single Field
name, which should be the name of the Field in the Rule Application. The results are always sorted in
ascending order unless the Field name is followed by the “desc” syntax. Please see the examples below:

To sort ascending, pass the Field name to use in the sort:

To sort descending, pass the Field name to use in the sort followed by the “desc” keyword:

• Note: The “order by” clauses generally contain much simpler expressions than “where”
clauses. However, InRule syntax rules format is used for the order by clause to be consistent
with the where clause approach.

Methods Available in the Rule Helper
The following table lists the public, static methods that are available in the SalesforceDriver

Method Name Description
LoadMappedChildCollection Populates a child Entity Collection based on an existing 1:N

relationship in Salesforce. The Collection is populated based on
existing parent-child relationship data in Salesforce.

LoadMappedChildEntity Populates a child Entity Field based on an existing 1:1 relationship in
Salesforce. The Field is populated based on existing parent-child
relationship data in Salesforce.

QueryCollection Populates an Entity Collection with a set of a given Entity type. An
optional filter clause (where clause) can be used to define selection
criteria for the Entity set. The Collection does not need to correspond
to a 1:N relationship in Salesforce.

QueryEntity Populates an Entity Field or variable based on a query to Salesforce.
An optional filter clause (where clause) can be used to define

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 46 of
111

Method Name Description
selection criteria for the Entity. The Field does not need to correspond
to a 1:1 relationship in Salesforce. If more than one Entity is returned
from the query to Salesforce, then the first Entity in the set is used.

QueryField Populates a primitive Field or variable based on a query to Salesforce.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. If more than one Entity is returned from
the query to Salesforce, then the Field value from the first Entity in the
matching set is used.

Additional Flags Available to Control Loading and Caching Behaviors
in the Rule Helper
During a given query operation, there may be advanced use cases that require specific control over
loading or reloading data from Salesforce. The optional overloads of the QueryEntity and QueryCollection
methods expose a set of optional Boolean flags that help control caching and depth of loading behaviors.
The table below list these parameters:

Parameter Name Description
loadChildren Denotes if the execution service should recurse the Entity graph and

load all children. If false, no children are loaded below the Collection
Members that are loaded. The default value is true.

useCaching Denotes if previously loaded Salesforce Entities should be reused from
the InRule entity cache, or if new entity instances should be created. If
false, the original entity data will be requested from Salesforce, and a
copy of the Entity is created. The Instance ID is not set to the ID of the
Salesforce Entity, which will also prevent changes to this entity from
being written back to Salesforce. This functionality can, for example, be
used to load the original values for an entity persisted in Salesforce
when rules are run on update and compare the original and updated
values. The default value is true.

overwriteIfLoaded Denotes if a previously loaded Salesforce Entity should be repopulated
with the latest values in Salesforce. This behavior will overwrite Field
values stored in the cache. The default value is false.

cacheInAppDomain Denotes if the result of the query should be saved in the persistent
AppDomain cache. The difference between this parameter and the
‘useCaching’ parameter above is that enabling this parameter will save
the query result in a cache that will persist across multiple different rule
executions, where the above parameter only enables caching within the
scope of a single rule execution.

• Note: The default values should always be used for the cache settings unless there is a

specific use case that requires different behaviors.

Using the Rule Helper with the Native REST Execution Service
While using the Salesforce rule execution service documented in this guide is the suggested way to
interact with Salesforce via rules, you can also use the rule helper from the native REST execution
service, which does not connect to Salesforce out of the box.

To do this, you will first need to copy the Salesforce rule helper assemblies to the bin directory of your
execution service. These assemblies can be found in the `RuleHelperDeployment` folder of the
framework zip you download from the support site. The method for copying these assemblies will differ

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 47 of
111

based on your exact hosting setup, but if your execution service is hosted in Azure you can copy these
files over via the App Service Editor or FTP.

Once you have copied the assemblies to the bin directory, you will need to add the required app settings
for authenticating to Salesforce. These are the same parameters provided in the Update parameters step
of the template deployment, but you will need to provide the exact app setting names instead of the
template parameter names. These are the settings you will need to provide, along with their mapping to
the template parameters from the section linked above:

App Setting Name Template Parameter Name

Inrule:sf:api:loginUrl sfLoginUrl

inrule:sf:api:username sfUsername

inrule:sf:api:password sfPassword

inrule:sf:api:securityToken sfSecurityToken

inrule:sf:api:consumerKey sfConsumerKey

inrule:sf:api:consumerSecret sfConsumerSecret

Once you have set these app settings, you should be able to use the rule helper to manually load and
save data to Salesforce from rules, just like you would from the Salesforce rule execution service.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 48 of
111

Appendix E: Methods for Executing Rules with Salesforce

Once the Salesforce components are installed, end-to-end connectivity can be tested by adding a call into
a Page Layout. Many possible approaches can be applied to call the DecisionClient Apex class—six
approaches are documented here, adding a button to the Lightning interface, adding a JavaScript button
to the Classic UI, executing rules from Apex, executing rules from Apex triggers, executing rules from
Salesforce Flow, and executing rules from the Salesforce REST Endpoint

1 Adding a Lightning Button

Navigate to the entity you wish to add the button to, note that you will have to add the button to each
entity individually.

Once on the desired entity page find the settings icon in the top right corner and select Edit Page.

On the left-hand side of the page in the Lightning Components section scroll to the bottom of the page
until you find the InRule_RunRules in the Custom-Managed Section

If you have not setup your Salesforce domain, you will see this message in the Custom-Managed
Section.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 49 of
111

Simply follow the link to setup your domain. Once it has been set and you have logged in with the new
domain come back to edit page and you should now see the InRule_RunRules Lightning Component.

Drag the window to the desired location on the page view. Once you have placed the component, click
on it and a menu bar on the right will appear three two available configuration values.

The first configuration field, Rule Application Name, allows you to define a Rule Application to use for this
specific lightning component. Placing a value in this field will override the Rule Application you have
defined in your Custom Setting as the default. Leave this field blank to use the default configured Rule
Application.

The “Rule Set Name(s)” field accepts a comma delimited list of Rule Set names. Adding multiple rule sets
here will create multiple Run Rules buttons for each defined Rule Set on the page. Leaving this field blank
will leave only the singular “Run Rules” button, and this button will execute the Default Rule Set for the
given entity. The Default Rule Set is defined as the entity’s name + “DefaultRules.” For example, if you
are adding the Lightning component to the Account entity, the Rule Set name it will default to if this field is
left blank is “AccountDefaultRules.”

If no Rule Sets are defined, 1 button will be displayed that uses the default Rule Set for the entity:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 50 of
111

If one Rule Set is defined, 1 button will be displayed that will use that defined Rule Set:

If 2+ Rule Sets are defined, a button per Rule Set will be displayed that will use the defined Rule Sets.

The last configuration field accepts a comma-delimited list of Rule Application Labels. This allows for
overriding the Rule Application Label defined on the Rule Execution Service and providing users the
ability to change what label to run rules against from the defined list of options.

When no Rule Application Labels are defined, the Run Rules button appears as normal and rules will be
executed against the label configured on the Rule Execution Service:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 51 of
111

If one Rule Application Label is defined, the Run Rules button appears as normal and rules will be
executed against that defined label:

If more than one label is defined, a dropdown box will appear underneath the Run Rules button that
allows users to select what label to run rules against. All defined Rule Sets and their associated buttons
will execute against the selected label:

Once you have configured these fields, click save in the top right corner. It will prompt you to activate this
page to make it visible to your users, click activate.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 52 of
111

Salesforce will now ask for the scope to activate the record page. Select the desired scope and click
Assign and then save on the subsequent prompt.

Navigate back to the main entity page and the component should appear.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 53 of
111

2 Adding a Classic UI Button

Classic UI buttons are not included directly in the InRule for Salesforce app, but we do provide a helper
library and sample code here to make it easier to add a button to a classic form for running rules. This
button will run rules, show notifications, and refresh field changes when clicked.

To add a Classic UI button, navigate to Setup Customize or Create, add a new Button. Set the
Behavior to Execute JavaScript and then the Content Source to OnClick JavaScript.

Within the script window, copy and paste over the sample JavaScript found below:

{!REQUIRESCRIPT("/soap/ajax/33.0/connection.js")}
{!REQUIRESCRIPT("/soap/ajax/33.0/apex.js")}
{!REQUIRESCRIPT('/resource/' & LEFT(SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(TEXT(NOW()),':',''),'-
',''),' ',''),10) & '000/inrule__DecisionClientHelper')}

var config = {
entityId : '{!Account.Id}',

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 54 of
111

entityType : "Account",
ruleSetName : "AccountDefaultRules"
};

var response = executeRules(config);

displayNotifications(response);

window.location.reload();

Your script window should now look similar to this:

To customize this button for the specific entity type you intend to use this button for, you can alter the
“config” object in the JavaScript by editing the values of the properties to match the particulars you want.

The table below includes a list of the properties that can be configured on the “config” object:

Parameter Name Description
entityId The unique Salesforce identifier for the root object in the request. This

follows the naming convention of: “entityName.Id”
objectType The Salesforce object type of the root object in the request
ruleSetName (optional) Optional. The name of an Explicit Rule Set to call as the entry point for

rule execution. If no value is supplied, then the Rule Sets configured as
‘Auto’ for that entity will be executed.

loggingLevel (optional, must
be manually added to config
object)

Optional. An integer that denotes the amount of information to log after
rule execution completes. Results are written to the InRule_Log__c
object. Values can be 0, 1, 2, or 3:

• 0 – disable all logging
• 1 – Logs errors and a minimal amount of information on

successful requests
• 2 – Logs errors, request information, rule engine

notifications, and rule engine validations
• 3 – Logs the same information as 2, but also includes

JSON from the HTTP request and response payloads

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 55 of
111

Defining a logging level here will override the logging level universally
defined for the InRule for Salesforce App in the custom object settings
for a specific button.

useEntityPrefix (optional,
must be manually added to
config object)

Optional. If set to true, the DecisionClient will append the entity label to
the supplied rule set name.

ruleAppName (optional,
must be manually added to
config object)

Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button.

Once your config object has been appropriately configured, simply save your button and add it to the
entity page layout for use. The button will leverage the DecisionClientHelper static resource to handle the
communication between the JavaScript button and the DecisionClient, as well as handling any
notifications returned from the rules.

To verify everything is setup correctly, open up a record for the configured object and click the ‘Run
Rules’ button you added. What will happen next is dependent on your configuring rule set, but if you are
running the included ‘AccountDefaultRules’, you should see the description of the account updated with
the current date and time.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 56 of
111

3 Executing Rules from Apex or Lightning Web Components
Rule Execution is handled on the Salesforce side by an Apex class installed with the InRule for
Salesforce App called the DecisionClient. The DecisionClient is what accepts the run rules requests from
the Run Rules button and trigger requests to handle sending it along to the Rule Execution Service, but it
also accepts calls from other Apex classes or Lightning Web Components (LWCs). This section will
document how to run rules from your own Apex classes or LWCs by calling the DecisionClient, as well as
detailing what manner of response it returns.

To run rules from another Apex class, simply invoke the executeRules method in the DecisionClient with
the following call:

inrule.DecisionClient.executeRules(String eventType, String id, String objectType, String
ruleSetName, Boolean useEntityPrefix, String ruleAppName, String ruleAppLabel, string
entityImage, Boolean persistChanges)

Alternatively, setting up a call to the DecisionClient from a LWC requires setting up an action. First, you
must reference the DecisionClient as your LWC’s controller in your .cmp file:

<aura:component controller="inrule.DecisionClient">

To create the run rules action to hit the DecisionClient in your component controller, new up your action
with by setting it as below:

var action = component.get('c.executeRules');

From there, the action can be setup and enqueued as with any other action, with the following parameters
to set:

 action.setParams({
 eventType: string
 id: string
 objectType: string
 ruleSetName: string,
 useEntityPrefix: boolean,
 ruleAppName: string,
 ruleAppLabel: string,
 entityImage: string,
 persistChanges: boolean
 });

Regardless of whether you are calling from Apex or a LWC, the arguments will need to be defined with
the following values:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 57 of
111

Parameter Name Description
Event Type (String) The event type for invoking rules. This will always need to be either

“insert,” “update” or “delete,” depending on what your rule is doing
entityId (String) The unique Salesforce identifier for the root object in the request. This

is a property available on all Salesforce objects and be accessed with:
“entityName.Id”

objectType (String) The Salesforce object type of the root object in the request. For
example, if running rules against an Account entity, this will need to be
set to a string value of “Account”.

ruleSetName (String) The name of an explicit Rule Set to call as the entry point for rule
execution.

useEntityPrefix (Boolean) If set to true, the DecisionClient will append the entity label to the
supplied rule set name. For example, if you pass in a ruleSetName of
“DefaultRules” and set useEntityPrefix to true, the effective
ruleSetName name would be “AccountDefaultRules”

ruleAppName (String)
(Optional)

Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button. If you do not
wish to override your Custom Setting, pass null here.

ruleAppLabel (String)
(Optional)

Optional. Defining and passing a rule app label here allows you to
override the rule app label configured on the execution service. If you
do not wish to override your execution service’s configuration, pass null
here.

entityImage (String)
(Optional)

Optional. This allows you to pass in the serialized JSON string of an
entity image as it exists at the time of calling the DecisionClient, which
will have rules execute against the entity image passed in, not the entity
image as it exists in Salesforce when the execution process reaches
the execution service. If you do not wish to pass this in, pass null
instead.

persistChanges (Boolean)
(Optional)

Optional. This allows you to define whether to persist data changes
made during rule execution to Salesforce. Pass in null to default this
value to true.

The DecisionClient will always return a JSON string; a serialized version of the DecisionClientResponse
object. Once you have received it back as a string, you will need to deserialize it to access its properties.

The available properties on the DecisionClientResponse are:

Property Name Description
IsSuccess (Boolean) Denotes whether or not rules successfully ran with no errors.

Notifications
(List<NotificationMessage>)

Provides a list of all notification messages returned by rule execution.
Each NotifactionMessage has 2 properties on it:

• Type (Integer): The notification type is an integer that maps to
a Salesforce notification type. 0 maps to Informational, 1 to
Success, 2 to Warning, and 3 to Error.

• Message (String): The notification text
Errors (List<ErrorMessage>) Provides a list of all errors encountered during rule execution. These

differ from errors thrown by the rule application itself, which are instead
added to the Notifications list as NotificationMessages of type Error.
Errors added into the Errors list are strictly errors encountered during
rule execution runtime.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 58 of
111

Each ErrorMessage has 2 properties:
• Source (String): At what point during runtime the error was

thrown
• Message (String): The error text

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 59 of
111

4 Executing Rules from Apex Triggers

As of v5.5.1, the InRule for Salesforce App supports the execution of rules from Update triggers with
some limitations. For a full list of these limitations, references the Known Issues and Limitations of
Executing Rules from Triggers section below.

To emphasize, only After Update and After Insert triggers are supported. Due to Salesforce’s
enforcement of all external service methods running asynchronously, trigger execution and persistence to
the Salesforce database will always complete before rule execution has had time to finish, thus
preventing the ability to execute rules on the “in-progress” entity image before it has been persisted. As
an extension of this limitation, no entity image rollbacks can occur as a result of any validation done
during or after the rule execution process.

As an alternative to Apex triggers, Salesforce Flows are a no-code alternative that can also be used to
call InRule. For an overview of the differences between these two options, refer to the following
Salesforce documentation: Record-Triggered Automation

Adding a Rule Execution Trigger

To define a rule-executing trigger, create a new trigger on the entity of choice. The following example will
use Account:

Next, all rule executing triggers must contain the boilerplate wrapper around their code defined below.
This is required to prevent infinite loops that may occur if the invoked rule edits the same entity.

https://architect.salesforce.com/decision-guides/trigger-automation

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 60 of
111

All operations, including calls to the rule execution service, will be contained within the If
(!System.isFuture()) block.

Based on whether you’re using an insert or update trigger and whether you want to pass the original or
new entity values to the rules, use either Trigger.new or Trigger.old to access the entity image:

At this point, the only remaining required component is to call the rule execution service. To call the rule
execution service from a trigger, invoke the inrule.DecisionClient.executeRulesFromTrigger method and
pass the appropriate parameters:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 61 of
111

The parameters for calling executeRulesFromTrigger, in the order they’re passed into the signature:

Parameter Name Description
eventType The event type for invoking rules. This will always be ‘update’.
entityId The unique Salesforce identifier for the root object in the request. This

follows the naming convention of: “entityName.Id”
objectType The Salesforce object type of the root object in the request
ruleSetName The name of an explicit Rule Set to call as the entry point for rule

execution.
useEntityPrefix If set to true, the DecisionClient will append the entity label to the

supplied rule set name. For example, if you pass in a ruleSetName of
“DefaultRules” and set useEntityPrefix to true, the effective
ruleSetName name would be “AccountDefaultRules”

ruleAppName (optional) Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button. If you do not
wish to override your Custom Setting, pass “null” here, as displayed in
the example above.

entityImage (optional) Optional. Defining and passing an entity image allows you to capture
the entity image at time of trigger execution to ensure its state for rule
execution, whereas leaving it out will require the execution to query
Salesforce to get the current entity state. This state may differ at that
point from its state when trigger execution began due to the
asynchronous nature of trigger execution.

Passing an entity image requires you first to serialize it into a JSON
string. An example of this can be found in the screenshot below.

An example of serializing and passing an entity image:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 62 of
111

At this point, all required components are set. Any operations you wish to include before/after the
invocation of the rule execution service can be added at the points denoted below:

It’s important to note that any custom code written after the rule execution service has been called must
not have any dependencies on outcomes of rule execution, as rule execution will be operating
asynchronously, and trigger execution will continue and likely finish well before rule execution does.

Known Issues and Limitations of Executing Rules from Triggers
Currently, there are a number of known issues and limitations with executing rules from triggers:

• Currently, only After Update and After Insert triggers are supported. Due to Salesforce’s
enforcement of all external service methods running asynchronously, trigger execution and
persistence to the Salesforce database will always complete before rule execution has had time
to finish, thus preventing the ability to execute rules on the “in-progress” entity image before it
has been persisted. As an extension of this limitation, no entity image rollbacks can occur as a
result of any validation done during or after the rule execution process.

• Due to the asynchronous nature of trigger execution, the trigger will not wait on a response from
the rule execution service before continuing with any additional code contained within it.
Therefore, you cannot rely on having a rule response at any point during trigger execution, even
if your code relying on it comes after your call to the execution service. It is not recommended to
have any code in your trigger that relies on any data contained in the rule response.

• As a result of triggers’ asynchronous nature, automatic data refresh on a record page as a result
of rule execution is not supported in Classic view, since the page has no way of knowing when
rule execution has completed. Notifications will still display once rule execution completes, but
the page will have to be manually refreshed by a user for them to be able to see any updates to
the record itself.

• Automatic data refresh on record pages is supported in Lightning, however, it requires giving all
users that will be initiating triggers that execute rules Read permissions to the InRule_Event
platform event. This can be done in two ways, both of which are explained in the below section
Adding Permissions to InRule Platform Event

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 63 of
111

• Due to the fact that triggers execute asynchronously and Formula fields on entities are calculated
and persisted asynchronously as well, any rules you attempt to execute from a trigger that make
use of a Formula field will be caught in a race condition between the Formula field being
calculated and persisted to the database and the rule execution service querying Salesforce to
fetch the currently persisted value of that field. If persistence for the Formula field has not yet
completed by the time the rule execution service reaches that point, it will pull down an out of
date value for that field and your rules will execute using the wrong value. Therefore, it is strongly
recommended that you do not execute rules that act on Formula fields from triggers. While there
is a possibility for it to work correctly, there is a high chance for unexpected behavior to occur
and there is no means of controlling whether it will work properly or not on any given execution of
that Rule Set from a trigger.

Adding Permissions to InRule Platform Event
Displaying notifications and refreshing the entity form after rules are run from a trigger relies on a
Salesforce Platform Event that is installed as part of the InRule package. However, by default, most
Salesforce default user profiles do not have read access to Platform Events. In order for notifications to
be displayed and data to be properly refreshed on a record page after rule execution via trigger,
you must give your users read access to the InRule_Event platform event.

There are 2 methods of doing this, both with their own advantages and disadvantages. Which approach is
best is ultimately dependent on the circumstances of your organization.

Add Platform Event Permissions via Editing Profiles

The first way of giving the needed permissions to your users is by editing their Profiles. In Salesforce, all
users have an assigned Profile that defines their permissions in the environment. Granting the needed
permissions to your users through this method can be as simple as editing the profile permissions of the
user types that will be setting off your trigger(s). This approach has some pros and cons.

Pros:

• Makes changes to entire profiles rather than specific users, meaning once it is done, all that will
need to be done for future users is to assign them to a profile with these permissions already
granted and they’ll be set

• If you are already using predominately custom/cloned Salesforce profiles in your environment,
making this change is very quick, easy, and doesn’t require any future overhead.

Cons:

• Cannot be accomplished with default profiles, which mandates cloning all of your profiles if your
users are using predominately default profiles.

• Migrating all users from default profiles to new profile types can be highly time-intensive
depending on the size of your org.

To do this approach, a user with system admin permissions must login to Salesforce and go to Setup.

From there, search for Profiles:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 64 of
111

Once you’ve navigated to the Profiles page, select the profile you wish to edit. For this example, we’ll be
granting the necessary permission to Standard Users

Once on that profile’s page, select Edit:

Scroll down until you see the “Platform Event Permissions” header:

Check the “Read” checkbox, then scroll to the bottom of the page and press Save.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 65 of
111

Repeat this process as needed for all profile types that need to be able to initiate rule executing triggers.

If the Read checkbox is greyed out for you and you can’t select it, this means you’re trying to edit a
default Salesforce profile. Salesforce has several “default” profile types that are commonly used; the
Standard User profile used in the example above is one such default profile. Unfortunately, Salesforce
default profiles cannot be edited. This means that if you have users that will be setting off your trigger(s)
that use default profile types, you will have to clone that profile, move your users from the default
Salesforce profile over to the clone of it, and add the permission on the new profile clone.

To clone a profile, navigate to that profile’s detail page as above, but instead of clicking “Edit,” click
“Clone.”

Name your new profile appropriately:

Hit save. Your new profile clone has been created. You should now be able to follow the steps above to
add the appropriate Platform Event permission.

Once that’s done, you need to move your users from the original profile over to the clone.

You will need to repeat this process for every profile type in your organization that needs UI updates
when triggers run

Add Platform Event Permissions via InRule User Permission Set

The alternative approach to granting the necessary platform event to your users is to apply the InRule
User Permission Set that is installed as a part of the InRule Salesforce package. This approach has its
own pros and cons:

Pros:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 66 of
111

• The InRule User Permission Set comes pre-installed and pre-configured with the InRule
Salesforce package, making the only required step being to assign the permission set to the
appropriate users

Cons:

• Permission Sets must be assigned to specific users, rather than profiles. This means that anytime
a new user is created, the permission set must be independently added to that user, creating user
management overhead. Managing this may not be viable within a large organization.

To add users to the InRule User Permission Set, go to Setup and search for Permission Set:

Find and select InRule_User_Permissions:

Select “Manage Assignments”

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 67 of
111

Select “Add Assignments”

You’ll be presented with a list of all users in your environment. You can select all users that will need the
ability to initiate rule executing triggers. Once you’ve selected all the relevant users, you can select
“Assign,” and the permission set will be assigned to all of those users.

These users will now be able to see UI updates when rules are run from triggers.

5 Executing Rules from Salesforce Flow

If you need to integrate rules with more complex process automation, rules can also be run from
Salesforce Flow. The InRule integration with Flow lets you run rules against a particular entity record and
receive back the status and notifications from rule execution.

There are currently 5 types of Flows in Salesforce:

• Screen Flow - With Screen Flow you can create a custom UI (user interface) and guide users
through a business process that can be launched from Lightning Pages, Experience Cloud
(previously known as Community Cloud), quick actions and more.

• Record-Trigger Flow - Record-Triggered Flow launches when a record is created, updated, or
deleted. So far, we have used Apex triggers for this automation, some of which can now be done
using Flows.

• Scheduled-Triggered Flow - This flow launches at the specified time and frequency for each
record in a batch. Traditionally, we have met this kind of requirement by using Apex batch jobs.

• Platform Event Flow - Platform event flow Launches when a platform event message is
received. For example, you can pump the data from an external system in Platform Events and
then use Flows to split and save the records in different objects.

• Autolaunched Flow - Auto Launches flow launch when invoked by Apex, Process Builder or
even REST API.

For more information about these Flows, you can visit the Introduction to Salesforce Flows.

https://www.apexhours.com/introduction-to-screen-flow/
https://www.apexhours.com/record-triggered-flow/
https://www.apexhours.com/platform-event-trigger-flow/
https://www.apexhours.com/auto-launched-flow-in-salesforce/
https://www.apexhours.com/introduction-to-salesforce-flows/

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 68 of
111

To run rules from a flow, you will need to add an ‘Action’ element to your flow. You can find the InRule
action by searching for ‘Run Rules’ in the search box. The display name will be ‘Run Rules’ and the ID
will be apex-inrule__DecisionClient

When adding the action, you will need to fill in the following required parameters

Parameter Name Description
Entity ID (String) The unique Salesforce identifier for the root object in the request. If

running a flow from an object page, you can configure this value to be
passed into an input variable

Object Type (String) The Salesforce object type of the root object in the request. For
example, if running rules against an Account entity, this will need to be
set to a string value of “Account”.

Persist Changes (Boolean) Enable or disable saving changes made to entities during rule execution
Rule App Label (String) Set to use a specific catalog version label when executing rules,

otherwise leave blank to always use the latest version of the Rule App
Rule App Name (String) The name of the InRule Rule App that contains the rule set to run
Rule Set Name (String) The name of an explicit Rule Set to call as the entry point for rule

execution.
Use Entity Prefix (Boolean) Typically set to false. If set to true, the DecisionClient will append the

entity label to the supplied rule set name. For example, if you pass in a
ruleSetName of “DefaultRules” and set useEntityPrefix to true, the
effective ruleSetName name would be “AccountDefaultRules”

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 69 of
111

This action has three outputs

Output Name Description
Notifications (Apex-Defined
collection)

Includes notifications fired from rules during execution. This output can
be assigned to a resource variable of the same type for use in
subsequent steps. The Apex class for this collection is
‘inrule__NotificationMessage’. This class has the following properties:

• Type: integer value representing notification type. 0 for Info, 1
for Warning, and 2 for Error

• Message: string value containing the notification text
Errors (Apex-Defined
collection)

Includes any errors that prevent rule execution from completing. This
output can be assigned to a resource variable of the same type for use
in subsequent steps. The Apex class for this collection is
‘inrule__NotificationMessage’. This class has the following properties:

• Message: string value containing text of the error
• Source: string value containing the error source

Is Success (Boolean) If rules are not able to be executed for any reason, this value will be set
to true. If true, additional error information will be available in the ‘Errors’
output collection

The following is an example of what a Flow using rules might look like. You can do other things with the
output from the Apex action, but this demonstrates a common use case, displaying rule notifications to
the user. The flow starts with Apex action, assigns the output collections to variables, loops over the
notifications to build a single string containing all notifications, and then outputs the value to the screen

When looping through the notifications, a decision checks the notification type integer to determine what
text to prefix the message with.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 70 of
111

The combined notification text value is then displayed on the screen

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 71 of
111

6 Executing Rules from REST Endpoint

As of v5.7.3 rules may also be executed by interacting with the Decision Client over REST. This easily
enables external workflows, such as Power Automate, to execute rules from the Decision Client. A POST
endpoint is available on the Decision Client that will accept a request to execute rules and return a
response containing information on the entity changes or information about errors encountered.

Authentication with Salesforce
Before sending your request to execute rules, an access token needs to be retrieved. This will be used in
the rule execution request to authenticate with the Salesforce REST API. Below is an example request
body that might be used in a POST request to your login URL to receive an access token. More
information about REST API authorization can be found in the Salesforce REST API Developer Guide.

{
 "grant_type": "password",
 "client_id": "{{clientId}}",
 "client_secret": "{{clientSecret}}",
 "username": "{{username}}",
 "password": "{{password}}{{secretToken}}"
}

Rule Execution Request
The URI for Decision Client rule execution REST endpoint will use the subdomain for your Salesforce org.

https://{{DomainName}}.my.salesforce.com/services/apexrest/inrule/executerules

The access token from the authorization request will then need to be provided as a bearer token in your
authorization headers.

https://developer.salesforce.com/docs/atlas.en-us.api_rest.meta/api_rest/quickstart_oauth.htm

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 72 of
111

Finally, you will need to supply the body for your salesforce request. Below is information on the request
parameters that can be sent as part of your Rule Execution Request, as well as an example request
body.

Parameter Name Description
Id (String) The unique Salesforce identifier for the root object in the request. This

is a property available on all Salesforce objects and be accessed with:
“entityName.Id”

ObjectType (String) The Salesforce object type of the root object in the request. For
example, if running rules against an Account entity, this will need to be
set to a string value of “Account”.

RuleSetName (String) The name of an explicit Rule Set to call as the entry point for rule
execution.

RuleAppName (String)
(Optional)

Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button. If you do not
wish to override your Custom Setting, pass null here.

RuleAppLabel (String)
(Optional)

Optional. Defining and passing a rule app label here allows you to
override the rule app label configured on the execution service. If you
do not wish to override your execution service’s configuration, pass null
here.

EntityImage (String)
(Optional)

Optional. This allows you to pass in the serialized JSON string of an
entity image as it exists at the time of calling the DecisionClient, which
will have rules execute against the entity image passed in, not the entity
image as it exists in Salesforce when the execution process reaches
the execution service. If you do not wish to pass this in, pass null
instead.

PersistChanges (Boolean)
(Optional)

Optional. This allows you to define whether to persist data changes
made during rule execution to Salesforce. Pass in null to default this
value to true.

{
 "Id": "0016g000015JnOnAAK",
 "ObjectType": "Account",
 "RuleSetName": "AccountDefaultRules",
 "RuleAppName": "SalesforceRules",
 "PersistChanges": false
}

Appendix F: Azure App Service Plan & Application Insights
Configuration

Azure App Service Plan Overview
The Salesforce Rule Execution Azure App Service runs on an Azure App Service Plan. The ARM
Template deployment process outlined in Section 3.3.2: Rule Execution App Service for Salesforce will,
by default, automatically deploy an App Service Plan for you.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 73 of
111

This App Service Plan will be deployed to the subscription and resource group provided during the
deployment process. Additionally, the plan will be configured with a “F1” (Free) pricing tier, but this can be
increased based on your scaling and configuration needs.

 Important: If you leave the ARM template configured to re-deploy the App Service Plan, updating
an existing one, the pricing tier of that App Service Plan will be set to the default pricing tier,
regardless of what it may currently be set to. If you do not wish the pricing tier to be reverted to
default, it is recommended you follow the steps below.

Should you wish to use a pre-existing Azure App Service Plan rather than have a new one created for
you, a few configuration steps within the ARM template parameters file are necessary.

Configuring the ARM Template to Use an Existing Azure App Service
Plan

1: Locate azuredeploy.parameters.json

The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined in
Section 3.3.2: Rule Execution App Service for Salesforce

2: Populate “appServicePlanName” parameter

Open the file in your text editor of choice. First, populate the “appServicePlanName” parameter. Set the
value equal to the name of your app service plan.

3: Set “createOrUpdateAppServicePlan” parameter

Next, just below the “appServicePlanName” parameter be sure to set the parameter called
“createOrUpdateAppServicePlan” to false

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 74 of
111

4: [Optional] Create “servicePlanResourceGroupName” parameter

In the event the App Service Plan you intend to use is located in a different resource group than the one
you are deploying the ARM template against, you need to add a parameter to inform the ARM template
what resource group your App Service Plan is in. Create the “servicePlanResourceGroupName”
parameter as shown below and define the value as the name of the resource group your App Service
Plan exists in.

5: Save azuredeploy.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section 3.3.2:
Rule Execution App Service for Salesforce as normal; your rule execution app service will now deploy to
the App Service Plan you defined in the steps above

Azure App Insights Overview
For improved logging capabilities, the Salesforce Rule Execution Service is configured to use an Azure
App Insights resource as a logging sink in addition to the logging the App Service itself already has. ARM
Template deployment process outlined in Section 3.3.2: Rule Execution App Service for Salesforce will,
by default, automatically deploy an App Insights resource for you.

The app insights resource will aggregate all the logs generated from the execution service. These logs
can be tremendously useful for debugging any issues encountered with the Rule Execution Service.
Depending on the level of event logging configured for the Rule Execution Service Event Log, these logs
can add insight into rule executions, entity loading, overall execution timing, and any errors encountered
during rule execution.

App Insights in non-Standard Azure Instances (Government Cloud)

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 75 of
111

If this is your first time deploying the arm template and you would like for the template to create the app
insights resource for you, then no other configuration is required.

However, if you would like to use a pre-existing app insights resource then you need to set the
appInsightsInstrumentationKey and the appInsightsConnectionString for that resource in the
azuredeploy.parameters.json. Then proceed with the rest of the deployment steps outlines in Section
3.3.2: Rule Execution App Service for Salesforce

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 76 of
111

Appendix G: InRule SaaS Portal Configuration

InRule SaaS offers customers the most streamlined deployment process, eliminating the need to install
and manage the InRule App Services in Azure, as InRule will manage the deployment of the Rule
Execution Service for Salesforce for you. SaaS customers are also able to use their SaaS portal to
access the information needed for configuring the InRule App for Salesforce and provide Service Account
credentials for the SaaS-hosted Rule Execution Service to connect to a Salesforce environment.

Access Solution Configuration Information
SaaS Customers can find the information needed for configuring the InRule App for Salesforce through
the Configuration page of their SaaS portal. This page will have a section for each Rule Execution
Service instance hosted for the customer by InRule. Please note that only the Salesforce Runtime
Settings are currently used by the Salesforce Execution Service. In a future release, settings from the
Execution Server Settings section will also contribute to the Salesforce Execution Service. In the interim,
if you need any of those settings changed, please reach out to InRule Support.

Additional configuration information can be located on the Provision Resources page available from the
cogwheel icon in the top right corner of the SaaS portal.

The Provision Resources screen is where you can find read-only configuration information such as the
Rule Execution Service URL and the Rule Execution Service API Key.

Providing Connection Information
Clicking the drop-down arrow for a Salesforce section will allow you to provide connection information that
will allow the SaaS-hosted Rule Execution Service to interact with your Salesforce environment. You
must configure authentication information for both Salesforce and for your Rule Execution Service

Salesforce Authentication

In order to authenticate to Salesforce, you must configure the appropriate login URL for your Salesforce
environment, the service account’s username, password, and security token, and the consumer key and

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 77 of
111

consumer secret associated with the Connected App you created as a part of Section 3.3.3: Configure
the InRule App.

Rule Execution Service Authentication

This configuration section defines the authentication type that will be used by Salesforce to authenticate
to the Rule Execution Service. Currently, the supported authentication types are API Key and a legacy
username/password basic authorization. Support for the basic auth configuration will be discontinued at
an unspecified date in the future. If using the basic auth configuration, you will additionally need to supply
a value for the username and password settings.

On the Salesforce side, the same credentials will need to be configured on the Named Credential
described in Section 3.3.3: Configure the InRule App.

Endpoint Override Configuration (Optional)

As of version 5.5, InRule for Salesforce now supports Overriding Endpoint Configuration via Azure App
Service App Settings. This allows for the overriding of various endpoint settings configured on a rule app,
such as REST API URLs or Database Connection Strings, by setting App Settings on your execution
service App Service.

To set an endpoint override on your app service, simply navigate to your rule execution app service, go to
the Configuration view, and click the drop-down arrow for Execution Runtime Overrides.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 78 of
111

Click the Add New Override button:

Click the drop-down arrow under the Type column and select the corresponding type for your override.
The Property column should auto-populate for you. Note that there is a drop-down arrow on the Property
column as well – some Types have multiple properties for you to choose from.

Your endpoint name should match the name of the endpoint in the rule app you wish to override.

The value of the override would then be set to whatever value you wish to override with.

Below is what a properly configured end-result would look like, using an InlineValueList override as an
example:

Once your override is set, simply save the changes to your app service. Upon the next execution of rules,
the specified endpoint type will be overridden with the supplied value.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 79 of
111

Appendix H: Named Credential Configuration

Named Credentials are used by the Apex code to make secure HTTP requests to the Rule Execution
Service. Currently, there are two types of Named Credentials available:

• Named/External Credentials (new) – These are created with the newly named credential
process introduced when Salesforce renewed named credentials in 2023. This new process
provides additional authentication options, more granular access control, and will be supported
for the foreseeable future.

• Legacy Named Credentials (old) – These are named credentials that were created prior to
Salesforce’s renewal of the named credential process. While it is still possible to create legacy
named credentials today, it is not recommended – Salesforce has stated they will be
discontinuing them at an unspecified date in the future. For additional information regarding
setting up a Legacy Named Credential, you can find those instructions here.

Important: If you have a legacy named credential set up from prior to the InRule 5.8.1 release, you will
need to delete your legacy named credential before you will be able to take advantage of the new
Named/External credentials. A warning message will display to make you aware of this when testing your
connectivity on the InRule application’s configuration page.

The instructions below will walk you through the process for setting up a Named/External Credential.

Setting up the Named/External Credentials
The InRule managed package includes pre-configured named and external credentials for your
convenience. Before you can make use of them, you will need to follow the steps below to finish the setup
using your user-specific information.

To begin, navigate to the Named Credentials settings page and locate the named credential called InRule
ApiKey Credential.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 80 of
111

Click on the label to be taken to the settings page for this named credential. Click on the edit button in the
top right corner.

URL URL for the rule execution service.
• For self-hosted tenants, this can be found in the Azure portal in the

overview section for the app service created earlier. For example,
https://sampleservice.azurewebsites.net

• For SaaS tenants, this can be found in the Provisioned Resources page
available from the cogwheel icon in the top right corner of the InRule
SaaS Portal.

Replace the value in the URL field with the URL for the rule execution service. Save your changes when
done.

https://sampleservice.azurewebsites.net/

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 81 of
111

Navigate back to the named credential settings page by clicking the Named Credentials link at the top of
the screen.

Once there, click on the External Credential tab and find the external credential named ApiKey
Credential. Click on its’ label to be taken to its’ overview page.

Locate the Principals section and find the principal named InRule Service Principal. Click the drop-down
arrow on the right side of the screen and click the edit button.

Click the Add button next to the Authentication Parameters section to add a new authorization
parameter. The Name field must be set to ApiKey.

API key A unique key that allows users to verify their identity when interacting with the rule
execution service. Your key can be located in one of two locations:

• For self-hosted tenants, if you have not done so already, you will need to
update your parameters as shown here – the api key configured will be
the same one you use in Salesforce.

• For SaaS tenants, your key will be located on the Provision Resources
page available through the cogwheel icon in the top right corner of the
InRule SaaS Portal.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 82 of
111

The Value field will need to be set to your API key. Save your changes when done.

The named credential should now be configured correctly. Before your users will be able to make use of
the named/external credentials, you will have to give them access. This can be accomplished either by
assigning a permission set, or by granting the user’s profile access.

Providing Named Credential Access via Permission Set
In order to grant access via a permission set, you will need to assign the InRule_User_Permissions
permission set to any user(s) you want to enable the named credential for.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 83 of
111

To begin, navigate to the Permission Sets setup page. Once there, locate the InRule_User_Permissions
permission set in the list and click on its’ label.

Once on the permission set’s overview page, click on the Manage Assignments button above the
permission set’s description.

On the following screen, click the Add Assignment button on the right side.

From here, select any user(s) you wish to grant access to the named/external credential to.
Note: You can click the checkbox next to the Full Name column to select all users displayed.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 84 of
111

Once done, select the Next button in the bottom right corner of the screen. You will be taken to the
assignment expiration management screen. From here, you can optionally provide an expiration date for
the permission set assignment. Once done, click the Assignment button in the bottom right corner.

Your user(s) should now have access to the named/external credentials and should now have access to
make authenticated callouts.

Legacy Named Credential Configuration
Legacy named credentials offer an older, less robust way of setting up authenticated callouts. They are
used by the Apex code to make secure HTTP requests to the Rule Execution Service.

In the InRule App, select the “Configuration” tab

Under the “Named Credentials” header, click the “Named Credentials” link

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 85 of
111

Press the drop-down arrow on the “New” button and select “New Legacy”.

Configuration
Form Fields

Label This should be set to InRule Rule Execution Service. This value is not required to
match exactly, but if you choose something else, make sure to replace the
autogenerated Name with the correct one

Name This value must be set to InRule_Rule_Execution_Service. The name field is
how the Named Credential is retrieved in the Apex code, so this needs to match
exactly

URL URL for the rule execution service in Azure. This can be found in the Azure portal
in the overview section for the app service created earlier. For example,
https://sampleservice.azurewebsites.net

Identity Type Named Principal

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 86 of
111

Authentication
Protocol

Password Authentication

Username Username for accessing the rule execution service. This should be the same
value chosen earlier for the ‘ruleServiceUsername’ parameter when setting up the
service in Azure or established via the InRule SaaS Portal

Password Password for accessing the rule execution service. This should be the same value
chosen earlier for the ‘ruleServicePassword’ parameter when setting up the
service in Azure or established via the InRule SaaS Portal

Callout Options Make sure ‘Generate Authorization Header’ is checked

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 87 of
111

Appendix I: Salesforce and Rule Execution Service Event Logging

InRule Salesforce Logging
This section will highlight how to configure and view event logging for the InRule for Salesforce App.

Enable InRule for Salesforce App Logging
To enable logging from the InRule for Salesforce App, first navigate to Setup > Develop > Custom
Settings.

Once you’re in the Custom Settings page, locate the InRule custom settings object and select “Manage”

Select Edit. Here, you can configure the LoggingLevel custom setting that will define whether or not the
InRule for Salesforce App logs to Salesforce and how verbose of logs it will create. The field can be
configured with values from 0-3, with each signifying the following:

• 0 – Disables all logging
• 1 – Logs errors and a minimal amount of information on successful requests
• 2 – Logs errors, request information, rule engine notifications, and rule engine validations
• 3 -- Logs the same information as 2, but also includes JSON from the HTTP request and

response payloads

Once you have configured the LoggingLevel, select “Save.”

Viewing InRule for Salesforce App Log

After installing the InRule for Salesforce App, a new custom tab to access the InRule for Salesforce App
logs will have been added. To add it to your navigation bar, click the “+” at the end of the navigation bar.

A list of objects will appear. Select “InRule Logs”

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 88 of
111

You will be navigated to a new page displaying a list of any recent logs that may have been created. To
view a list of all logs, select “All” from the dropdown list at the top of the page and select “Go!”

You can now view all logs created by the InRule for Salesforce App. To view more information about an
individual log, you can click on the log ID to view the log details

What fields are and aren’t populated is determined by what logging level you configured.

Rule Execution Service Event Log

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 89 of
111

Event logging can be enabled in the Rule Execution App Service to monitor application events. These
logs can be tremendously useful for debugging any issues encountered with the Rule Execution Service.

Viewing Application Event Logs

To enable event logging, login to Azure and navigate to your App Service as created as a part of the
Azure deployment process detailed in Section 3.3.2: Rule Execution App Service for the Salesforce.

Once you’re looking at the overview of your app service, select Diagnose and solve problems

Select Diagnostic Tools

Select Application Events

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 90 of
111

You should see a list of all application events logged by the rule execution service, denoted with the
notification level, timestamp, event ID, source and web server. Selected an event log will cause the log
details to appear in a separate column on the right-hand side of screen.

In the event of rule service issues, error events in this log stream can be useful for debugging purposes.
For example, below is an example of an error event log in an instance where the rule service contacting
the catalog looking for a rule application that didn’t exist:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 91 of
111

Typically, the response message at the beginning of the log and the Error Information section provides
the most pertinent debugging information.

Adjusting Logging Levels

The Application Event Log can quickly become bogged down with too many logs, making finding specific
logs that you may be interested in more difficult. To cut down on excessive informational logs, the Rule
Execution Service, by default, will be deployed with a logging level of “Warn,” meaning only Warnings and
Errors will be logged. However, this can be adjusted as needed for whatever your needs may be.

To adjust your Rule Execution Service’s logging level, navigate to your App Service as created as a part
of the Azure deployment process detailed in Section 3.3.3: Rule Execution App Service for the
Salesforce.

Once you’re looking at the overview of your app service, select Application Settings in the settings
menu:

Scroll down until you see the Application settings section:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 92 of
111

Locate the inrule:logging:level setting. Note that its value is currently set to “Warn.”

Simply change the value to the desired logging level. You may select from one of the following levels that
the Rule Execution Service leverages:

Logging Level Details
Info Logs all application events, including Informational

events that track the general flow of the
application

Warn Logs Warning and Error events. Warning events
highlight abnormal or unexpected events in the
application flow, but don’t otherwise cause
application execution to stop

Error Logs only Error events. Error events result in the
halted execution of the application’s current
activity due to a failure

Once you have configured the setting to the desired to level, press Save at the top of the page:

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 93 of
111

Entity Loading Log

Enabling Info level logging on the Execution Service can provide more detailed performance data. The
plugin trace log will include some summary data about the entire rule execution run, but the execution
service can log specifics about entity data loading and rule execution from the service. To enable the info
level logging set the “inrule:logging:level” app setting to “Info”. For all installations this can be done by
editing the web.config, but Azure-hosted services can also edit this setting via the Azure portal.

Setting this to “Info” will enable two sets of logs, the standard InRule SDK logs that appear for all InRule
products, and the data loading logs that measure entity loading specific to the Salesforce integration. You
can find all the details about the Event Logs on the InRule support site here. There are a variety of
different events, but the ‘ExecuteRuleSet’ entry will contain some of the most important measurements,
such as compile, execution and external call times.

However, these measurements only capture actual rule execution, and before rule execution happens the
entity tree is loaded from Salesforce. The data loading log captures this information. When executing
rules from Salesforce, only the root entity is sent from the plugin to the execution service, and the
execution service will then use the rule app metadata to determine which relationships and entities need
to be loaded. The execution service batches these requests for greater efficiency, but very large entity
trees or network latency can still lead to long load times. The entity loading log breaks down the total
loading time into each ‘batch’ of loading requests made, and lists the total load time and all entities loaded
in the batch. This information can be used to identify where large numbers of entities are being loaded
and how long particular batches take to retrieve from Salesforce.

Taken together, these logs can be used with the plugin trace log to get an end-to-end picture of
performance, and help identify which steps consume the most time. An extract of a sample of the data
loading log is shown below.

Entity Loading:
Total Loading Time: 911.5114ms
Total Org Service Time: 701ms
Root Entity: inr_projectprofile

Related Entities: inr_projectprofile -> account lookup <inr_account_inr_projectprofile> (1),
inr_projectprofile -> inr_agreement lookup
<inr_inr_agreement_inr_projectprofile_PrimaryAgreement> (1), inr_projectprofile ->
inr_projectprofilegroup lookup <inr_inr_projectprofilegroup_inr_profile> (1),
inr_projectprofile -> inr_agreement collection <inr_inr_projectprofile_inr_agreement> (2),
inr_projectprofile -> annotation collection <inr_projectprofile_Annotations> (33),
inr_projectprofile -> inr_businessapplicationtype collection
<inr_inr_businessapplicationtype_inr_projectpr> (1), inr_projectprofile ->
inr_integrationdetail collection <inr_inr_integrationdetail_inr_projectprofile> (5),

https://support.inrule.com/hc/en-us/articles/4410085857933-Event-Log-Details

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 94 of
111

inr_projectprofile -> inr_runtimeapplicationtype collection
<inr_inr_runtimeapplicationtype_inr_projectpro> (4), Time: 180.1637ms
Related Entities: account -> incident collection <incident_customer_accounts> (43),
inr_agreement -> serviceappointment collection <inr_agreement_ServiceAppointments> (69), Time:
128.366ms
Related Entities: incident -> subject lookup <subject_incidents> (8), serviceappointment ->
service lookup <service_service_appointments> (5), Time: 109.0635ms

In addition to always being logged on the execution service when Info logging is enabled, this log can
also be returned in the response and logged to the plugin trace log for easier access.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 95 of
111

Appendix J: New Releases and Upgrading Versions

In most cases, updating InRule for Salesforce is a relatively straight forward process. You will effectively
follow the same order of operations of the initial installation steps outlined in this project.

The components that will need to be upgraded are:

• irAuthor
• Azure Rule Execution Service
• InRule for Salesforce App

All 3 of these components must be upgraded in all upgrade scenarios, and all three must be
upgraded to the same version.

You can review the InRule Version Release Notes here. If you’re upgrading a version that’s not the latest,
keep in mind that you’ll need to use a versioned package link for the InRule for Salesforce App – App
Exchange only offers the latest version. This distinction is discussed in more detail in Section 3.3.3:
InRule for Salesforce App. The link provided in this section is for the version matching the version of this
document. If you need an older version than this document’s version, do not use the link located in
Section 3.3.3. You’ll need the Deployment Guide for that version.

This appendix discusses some special cases and considerations to be aware of when upgrading.

Release History

Version Compatibility Considerations
The below list of items for upgrade consideration includes specific fixes or changes that may require
migration or configuration action. Issue number and title are included here, but you can refer to the

https://support.inrule.com/hc/en-us/articles/26895219679245-InRule-Decisioning-Version-5-8-1-Release-Notes

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 96 of
111

release notes section of the support site for further information: Decision Platform Release Notes – InRule
Technology. This page includes release notes for all InRule products, but Salesforce release notes will be
prefixed with “SF”

Important: Again, when upgrading to a new version, irAuthor, InRule for Salesforce App, and the
Azure Rule Execution Service should always be upgraded together

Issue Number Version Description
SFC-279 5.8.1 A new configuration setting, Auth Type, has been added. For existing

users upgrading to 5.8.1, this setting will be set to basic
username/password authorization. Authorization credentials configured in
the Named Credential must now match the Auth Type configured for the
Rule Execution Service.

SFC-278 5.8.1 Added support for the new Named/External Credentials introduced by
recent Salesforce updates. Named Credentials that existed prior to these
updates are now referred to as Legacy Named Credentials and should be
deleted once the new credentials have been configured.

SFC-272 5.8.1 Added support for Webview2 to the irAuthor Salesforce login, resolving
an issue with lightning-based login URLs such as https://your-
username.lightning.force.com. Webview2 will now be used to render the
login page if the runtime is present. If the runtime is not present, the
legacy implementation will be used. A new warning log was added when
the runtime is not detected.

SFC-261 5.7.3 Added ruleAppLabel parameter to execution service arm template. By
default this label is empty. No ruleAppLabel will result in the most recent
version of a rule app being used. Customers relying on a label to denote
the production ready version of a rule app, such as the LIVE, will want to
add the production label to the arm template prior to upgrade deployment.

SFC-48 5.7.0 Added improvements to the InRule Log Entity. Views will need to be
manually updated to take advantage of these updates.

SFC-126 5.7.0 Added support for interactive login to irX, allowing login without requiring
the Salesforce API token and the Consumer Secret/Key. This also
enables support for MFA authentication.

SaaS Upgrades
For SaaS customers, the upgrade process will be communicated to you by InRule via email. Keep an eye
out for these communications, as they will be the primary source of guidance around what to do in
upgrade scenarios. Relevant information from these communications includes when an update will be
occurring, the new features coming with the update, the maintenance times required to apply the update,
and mandatory steps you’ll need to take immediately following the update. It is recommended to update
via the Power Platform Admin.

Execution Service App Settings
When running an ARM template deployment to upgrade an existing app service, the new deployment will
remove all app settings that currently exist and replace them with the settings during the new deployment.
Because of this, it is important to save your parameters file when you do a deployment. If you do not have
your previous parameters file you can find it in the deployments section of the Azure Portal. This also
means that any settings that were changed or added manually, such as logging level or endpoint

https://support.inrule.com/hc/en-us/sections/360012854991-Release-Notes
https://support.inrule.com/hc/en-us/sections/360012854991-Release-Notes

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 97 of
111

overrides, will be removed.

Alternatively, current app setting values can be manually set in the ARM template parameter file prior to
deployment to have the template deploy using those values. Should you go this route, be thorough during
the transfer process, it is common for values to have been manually changed over time. For a thorough
breakdown of the relevant parameters, reference Section 3.3.2: Rule Execution App Service for
Salesforce

Lastly, redeploying or upgrading via the ARM template will remove your InRule license from the resulting
app service. The license file will need to be manually added back; for a walkthrough on how to do this,
reference Appendix K: License Management.

irX Salesforce Login Updates
As of v5.7, the irX Salesforce plugin now uses web login to Salesforce, rather than the former form-based
authentication configuration. This allows for simply signing into Salesforce through Salesforce’s native
login experience, rather than needing to configure security tokens and consumer secrets/keys within irX.
Additionally, this allows for login from accounts with Multi-Factor Authentication (MFA) required, whereas
MFA-required accounts were not compatible before (Note: MFA support only applies to irX. Executive
service accounts with MFA required are still not supported).

If upgrading from an older version, old usernames and environments will be preserved, but users will
need to re-login.

Default Rule App Label Change
As of v5.7.3, the default Rule App Label configured on the execution service has been changed from
“LIVE” to not being set with a value. If a default label is not configured on the execution service, it will now
default to using the most recent version of the rule app being run. This has the potential to create an
issue during upgrade scenarios where users are relying on the LIVE label to denote their production-
ready rule. If using the most recent version of the given rule app is not the desired outcome, the default
label on the execution service will need to be set back to LIVE (or whatever the appropriate production
label for your existing rule apps may be). This can be done in the ARM template prior to upgrade
deployment.

InRule Log Entity
As of v5.7, updates have been made to improve the information displayed in InRule Logs. This includes
updates made to the list views. Salesforce does not allow list views to be updated with a package update,
so list view updates will need to be performed manually.

To update the “All” list view:

1. Navigate to the InRule Logs tab
2. Select the “All” list view
3. Select the List View Controls
4. Select the “Select Fields to Display” option

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 98 of
111

5. Use the “Select Fields to Display” window to add and order fields for the All view. Below is the
recommended configuration for the “All” list view.

The “Recently Viewed” list view is controlled by the Search Layout. As such updating the “Recently
Viewed” list view is done by updating the Search Layout for the InRule Log object in the Object Manager.

To update the “Recently Viewed” list view:

1. Select “Search Layouts” from the InRule Log Object Manager Screen
2. Use the dropdown arrow for the Default Layout to select the option to Edit the Default Layout

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 99 of
111

3. Use the “Edit Search Layout” page to add and order fields for the InRule Log Search Layout.
Once the changes to the Search Layout are saved, it will update the “Recently Viewed” list view.
Below is the recommended configuration for the InRule Log Search Layout.

Named Credential Changes
Salesforce has revamped their Named Credential process – existing Named Credentials are now referred
to as Legacy Named Credentials and will be discontinued at an unspecified date in the future. Starting
with InRule version 5.8.1, we have added support for the new Named Credential process to the InRule
managed package. We recommend following the configuration steps here and then deleting any InRule
specific named credentials that existed prior to upgrading to version 5.8.1.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 100 of
111

Important: Failure to remove the existing legacy credential will result in continued usage of that
credential, regardless of whether you have configured the new credential included in the package
upgrade.

Important: Failure to configure the new credential puts you at risk of a breaking change being introduced
by Salesforce when they deprecate support for Legacy Named Credentials.

Deleting the InRule Package
In some situations, it may be necessary to delete the InRule package from your organization to resolve an
issue. Before deleting the package, ensure you have backed up any config or log data you want saved.
Then you will need to remove all references to the InRule package from any customizations you have
made, including things like forms and flows. If you attempt to delete the package without removing these
customizations, Salesforce will list any remaining dependencies you need to remove.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 101 of
111

Appendix K: License Management

Licenses are required for both the Catalog Service and the Rule Execution Service. Whether you’re
deploying an Online or On-Prem service will determine the appropriate method for activating your InRule
licenses. For Online installations, you will have an Azure license file provided to you by InRule which can
uploaded either through Azure’s App Service Editor tool or via FTP. Walkthroughs of both means are
provided below.

For On-Prem services, you will need to leverage the InRule License Activation Utility. A walkthrough of
this process can be found here.

Uploading a License File

Azure App Service Editor

To upload the InRule license file to your execution service or your catalog service, navigate to the Azure
portal and to the appropriate app service. On the left-hand nav-bar, scroll down until you find the App
Service Editor option, under the Development Tools header:

On the resulting page, press “Go”

From here, you’ll need to navigate to the appropriate file location, which is different depending on if you’re
adding it for the Execution Service or the Catalog Service:

Execution Service Catalog Service

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 102 of
111

Right-click on the bin folder on the left-hand side of the
screen, then select Upload File:

Find your InRuleLicense.xml file wherever you have it
stored and select Open to finish.

Right-click anywhere in the top level of the
wwwroot directory, then select Upload File:

Find your InRuleLicense.xml file wherever
you have it stored and select Open to finish.

With that, your license file should be uploaded and usable by your Rule Execution or Catalog Service.

FTP
This example leverages Azure CLI in addition to PowerShell commands. If you intend to use this
method, please run the CLI from PowerShell.

Alternative approaches using PowerShell only should be possible if desired but are not detailed in
this document.

First, retrieve the FTP deployment profile (url and credentials) with the az webapp deployment list-
publishing-profiles command and put the values into a variable:

Example: az webapp deployment list-publishing-profiles --name contoso-execution-
prod-wa --resource-group inrule-prod-rg --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

az webapp deployment list-publishing-profiles --name WEB_APP_NAME --resource-group
RESOURCE_GROUP_NAME --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

Then, upload the license file using those retrieved values:

Example:
$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/bin/InRuleLicense.xml");$client.UploadFile($uri,

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles
https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 103 of
111

"$pwd\InRuleLicense.xml");

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/bin/InRuleLicense.xml");$client.UploadFile($uri,
"LICENSE_FILE_ABSOLUTE_PATH")

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 104 of
111

Appendix L: Known Issues, Limitations and Troubleshooting

This portion of the document lists current known issues and limitations that may be encountered in usage
of the Integration Framework. Most should only be encountered in limited edge cases.

In general, when beginning to troubleshoot a given issue, it is critical that you verify that you are running
matching versions of irAuthor, the Rule Execution Service, and the InRule for Salesforce App.
Mismatched versioning can be the root of a plethora of unpredictable problems. For more information on
this and upgrading InRule components, refer to Appendix J: New Releases and Upgrading Versions.

API Authentication to Salesforce
An authentication error response when attempting to login to Salesforce during rule execution is generally
the result of a bad username, password, or security token. All three of these values must be properly
configured to be able to authenticate.

You can test your ability to authenticate to Salesforce via API in a number of different ways, depending on
your specific scenario:

Within Salesforce, you can navigate to the InRule Configuration page and leverage the Test Connectivity
button. This button will verify your execution service’s ability to authenticate to Salesforce and provide
more specific error handling in the event of an issue.

For SaaS customers, a similar Test Connectivity button can be found in the SaaS portal’s Salesforce
configuration section

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 105 of
111

Alternatively, you can leverage Salesforce’s available collections to test authentication via Postman.
These collections can be found here.

Security Tokens

A common cause of authentication issues is confusion around how Salesforce handles API security
tokens. In most scenarios, security tokens are required. Security tokens are only optional in scenarios
when the account attempting to authenticate is connecting from a Trusted IP address. Trusted IPs can be
set globally, meaning any user that connects from an IP in the trusted range will be regarded as trusted,
or on the Profile level, meaning that only users assigned to the given Profile will be regarded as trusted
when connecting from an IP that falls in the trusted range. If the account in question does not fall in a
configured Trusted IP range, it must have a security token configured.

Multi-Factor Authentication

Currently, service accounts configured to require multi-factor authentication (MFA) are not supported by
Salesforce’s authentication endpoint. As a result, MFA cannot be set to “required” for your service
accounts, or authentication will fail.

Apex Callout Timeout
When calling out to an external system from Apex via HTTP, the maximum total communication time limit
set by Salesforce is 120 seconds. Executing rules involves a single HTTP callout, and the framework is
configured to use all 120 seconds for the timeout. If the timeout is reached, you will receive a “Read
Timeout Error” when running rules. This can occur because of latency between Salesforce and the rule
execution service, or anything else that causes the rule execution service to take more than 2 minutes to
respond.

Salesforce API Limits
In order to maintain performance and availability, Salesforce has various limits on the number of requests
that can be made to its API. Full documentation of these limitations can be found here, but as an
example, in a Developer Edition instance, you are limited to 15,000 calls per 24-hour period. The rule

https://github.com/forcedotcom/postman-salesforce-apis
https://developer.salesforce.com/docs/atlas.en-us.salesforce_app_limits_cheatsheet.meta/salesforce_app_limits_cheatsheet/salesforce_app_limits_platform_api.htm

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 106 of
111

execution service makes requests via the API to Salesforce to load and save data, and these will count
against any limits, but these requests are batched to be as efficient as possible.

Multiple Collections with the Same Name
There is a known issue that causes a null reference exception to be thrown when loading entities that
have multiple collections of the same name on them, with the only difference being capitalization. An
example of this scenario can be seen below:

This is currently not a supported scenario; all collections on a single given entity need to have wholly
unique names; differences in capitalization do not adequately distinguish the two collections as unique
from each other.

Application Insights Location Error
Application Insights resources are not available in every region, the list of supported regions can be found
in Microsoft’s Product Availability. By default, the ARM template will attempt to deploy the App Insights
resource in the resource group specified for the template deployment. If this resource group is in one of
the unsupported regions you will get the following error:

To fix this error we will have to choose a specific region for the Application Insights resource in the ARM
template parameters file.

1. Locate InRule.Salesforce.Service.parameters.json
The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined
in Rule Execution App Service for Salesforce

2. Create an “appInsightsLocation” parameter
Open the file in your text editor of choice. First, create the appInsightsLocation” parameter at
the bottom of the parameters file. Set the value equal to a region where Application Insights
resources are offered.

https://azure.microsoft.com/en-us/global-infrastructure/services/?products=all®ions=non-regional,us-central,us-east,us-east-2,us-north-central,us-south-central,us-west-central,us-west,us-west-2

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 107 of
111

3. Save InRule.Salesforce.Service.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Rule
Execution App Service for Salesforce as normal; your rule execution app service will now deploy
to the App Service Plan you defined in the steps above

Performance

Azure Platform
The Rule Execution App Service for Salesforce can use either a 64-bit or 32-bit platform in Azure. As of
v5.7.3, the configuring the platform will be managed in the Arm Template and will be based on the app
service plan. Using the 64-bit platform requires a Basic or higher app service plan, so when a Basic or
higher app service plan is used in the Arm Template, the Rule Execution App Service will be deployed
with the 64-bit platform. Otherwise 32-bit is used.

Apex Trace Log
When troubleshooting performance issues, the InRule Log entity included with the package provides
detailed metrics to help analyze the various components of rule execution performance. At a high level,
the logs provide run times for the various execution steps. The ‘Information’ section of the log form
includes a field for ‘Execution Time’, which is the total run time for the Apex rules method. In addition, the
InRule log also provides a more detailed breakdown of steps in the trace text. These are broken into
Execution Service and Save Time.

Execution Service time will typically be longer, as this includes communication latency over HTTP,
loading of additional entity data, and execution of rules. Save time will not always show up in trace logs,
but if any entity changes come back from rule execution the time needed to save them will be reflected
here. The trace log will also include a message noting the number of entities returned from the execution
service for saving. This saving should not take much time for a handful of entities but can take several
seconds for large change sets.

For a further breakdown of the data loading and execution time from the rule execution service, the ‘Info’
level event logs for the App Service can be accessed through the Azure Portal.

Included below is a sample trace log that includes these features.

Starting rule execution

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 108 of
111

Sending request to rule execution service at
callout:InRule_Rule_Execution_Service/SfRuleExecution.svc/ExecuteRulesFromPlugin?eventType=upd
ate&id=0018A00000cPk1CQAS&entityName=Account&ruleAppName=SalesforceRules&ruleSetName=RuleSet1&
ruleAppLabel=&appDomainCache=0.0
Received response from rule execution service
Execution Service Time: 3,221ms

Saving 4 changes to Salesforce
Processing change -- Insert on entity ID 73c95b94-df07-44c6-8895-fcbc3c422a3c -- type Contact
Processing change -- Insert on entity ID 01737977-eb66-46c9-89d2-2d1c94756e7d -- type Account
Processing change -- Insert on entity ID 6ed24d2a-77dd-497b-ac7c-4b692f9e8f6c -- type Case
Processing change -- Insert on entity ID 3cb009a2-a3e8-46d6-a368-e3892511b39a -- type
WorkOrder
Save Time: 676ms

Exiting rule execution

Request and Response Message Size Limitations
Salesforce includes a variety of different governors to track and enforce limits on resources used by
Apex. One of these is request and response size limitations to HTTP callouts. Salesforce sets this limit at
12 MB for both requests and responses. These limits should not commonly be exceeded, but if you get
this error during rule execution, try to reduce the number of notifications, validations, or entity changes
you are making in a rule set. These are all returned in the response for processing, and reducing these
can reduce the response message size.

Enable Background Compilation
This setting controls whether the download, compilation, and caching of updates to rule applications from
the catalog is handled on a background task. When enabled, rule execution will not be blocked while
updating the rule app and will instead run immediately against the currently cached version. Self-hosted
tenants should ensure this value is set to true for their deployment to avoid unnecessary catalog
overhead. For additional information, please view the documentation available on the Configuration
Overview page.

Disabling State Refresh
Disabling the state refresh option could improve performance for applications with many RuleHelper calls.
State refresh is configured for both .Net Assembly Function Libraries, and User-Defined Functions.

.Net Function Assembly Libraries

To disable state refresh for .Net Assembly Function Libraries, begin by navigating to the Endpoints tab in
irAuthor. Once there, select the function library containing the function you wish to disable state refresh
for.

https://support.inrule.com/hc/en-us/articles/19630208136205-Configuration-Overview
https://support.inrule.com/hc/en-us/articles/19630208136205-Configuration-Overview

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 109 of
111

Select the function being updated from the list and then click the refresh icon on the right.

A Refresh Options pop-up should appear – locate the “Refresh all bound objects” checkbox and uncheck
it. Click OK.

State refresh should now be disabled for this function.

User-Defined Functions

To disable state refresh for User-Defined Functions, begin by navigating to the User-Defined Functions
tab of your app in irAuthor. Once there, select the function you wish to disable state refresh for and click
the “Modify state refresh options” link under the State Refresh Options section.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 110 of
111

A State Refresh Options pop-up should appear. Deactivate the “Enable full refresh of all bound objects”
checkbox and lick Ok.

State refresh should now be disabled for this function.

InRule for Salesforce Deployment Guide

Copyright© 2024 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 111 of
111

	Table of Contents
	1 Introducing InRule for Salesforce
	2 Understanding your options
	2.1 Salesforce – InRule SaaS
	2.2 Salesforce – Self-hosted in Microsoft Azure
	2.3 Salesforce - IIS On-Premises Rule Execution Service

	3 Performing the Installation
	3.1 Solution Overview
	Catalog App Service and Azure SQL Database
	Rule Execution App Service for Salesforce
	InRule for Salesforce App

	3.2 Gathering prerequisites
	Optional Resource Files
	Rule Authoring Environment
	Administrative Accounts
	Salesforce Service Account
	Security Token
	Other Credentials

	InRule Azure License File
	Deciding resource names
	Enabling OAuth Username-Password Flow

	3.3 Deploying and Configuring Components
	3.3.1 Catalog App Service
	Installing the Catalog App Service
	Testing the Catalog App Service
	1: From the irAuthor launch screen, navigate to File -> Open -> Open from Catalog
	2: Choose Add Catalog, enter connection information for the Catalog Server that you deployed, and then select Use This.
	3: Select the SalesforceRules rule app and hit Open
	4: Download the SalesforceRules sample rule app.
	5: Navigate to this file in your rule authoring environment and double click on it, this will open the file with irAuthor.
	3: Save the Rule Application by choosing File Save As Save to Catalog
	6: Choose Add Catalog, enter connection information for the Catalog Server that you deployed, and then select Use This.
	7: Save with the name SalesforceRules

	Upload License File

	3.3.2 Rule Execution App Service for Salesforce
	1: Locate azuredeploy.parameters.json
	2: Update parameters
	3: Option 1: Deploy ARM Template with Azure CLI
	3.1 Run Command Prompt or PowerShell
	3.2 Navigate to the RuleExecutionAzureService folder
	3.3 Enter “az login” to login into Azure
	3.4 Enter your Azure admin credentials to login when prompted in the new browser window opened
	3.5 Select the appropriate subscription
	3.6 Create Resource group
	3.7 Execute the following command to deploy the ARM template

	4: Option 2: Deploy ARM Template with PowerShell
	1.1 Run PowerShell
	1.2 Navigate to the RuleExecutionAzureService folder
	1.3 Enter “Connect-AzureRmAccount” to login into Azure
	1.4 Enter your Azure admin credentials to login when prompted in the new browser window opened
	1.5 Select the appropriate subscription
	4.6 Create Resource Group
	4.7 Execute the following command to deploy the ARM template

	5: Verify Setup
	6: Upload License File

	3.3.3 InRule for Salesforce App
	1: Install from AppExchange:
	2: Navigate to the InRule for Salesforce App
	3: Configure the InRule App
	Connected App
	Named Credential
	Custom Setting

	4: Verify a successful deployment
	5: Add the Run Rules button

	Appendix A: Additional Resources
	InRule’s Support Website
	InRule’s Support Team
	InRule’s ROAD Team
	InRule Training Services

	Appendix B: Anatomy of a Request for Execution of Rules
	Appendix C: irX General Integration Concepts
	Runtime Mapping across Nested Relationships
	Controlling irVerify Behavior with Load, Save and Inactive Record Settings

	Appendix D: Accessing Salesforce Directly from Rule Helper
	When to use the Query from Rules Approach
	Working with Disconnected Fields when Loading and Saving Data
	Integrating the Rule Helper Component
	Filtering Queries using the Where Clause Builder
	Ordering Query Results with the OrderByClauseBuilder
	Methods Available in the Rule Helper
	Additional Flags Available to Control Loading and Caching Behaviors in the Rule Helper
	Using the Rule Helper with the Native REST Execution Service

	Template Parameter Name
	App Setting Name
	Appendix E: Methods for Executing Rules with Salesforce
	1 Adding a Lightning Button
	2 Adding a Classic UI Button
	3 Executing Rules from Apex or Lightning Web Components
	4 Executing Rules from Apex Triggers
	Adding a Rule Execution Trigger
	Known Issues and Limitations of Executing Rules from Triggers
	Adding Permissions to InRule Platform Event
	Add Platform Event Permissions via Editing Profiles
	Add Platform Event Permissions via InRule User Permission Set

	5 Executing Rules from Salesforce Flow
	6 Executing Rules from REST Endpoint
	Authentication with Salesforce
	Rule Execution Request

	Appendix F: Azure App Service Plan & Application Insights Configuration
	Azure App Service Plan Overview
	Configuring the ARM Template to Use an Existing Azure App Service Plan
	1: Locate azuredeploy.parameters.json
	2: Populate “appServicePlanName” parameter
	3: Set “createOrUpdateAppServicePlan” parameter
	4: [Optional] Create “servicePlanResourceGroupName” parameter
	5: Save azuredeploy.parameters.json and continue deployment

	Azure App Insights Overview
	App Insights in non-Standard Azure Instances (Government Cloud)

	Appendix G: InRule SaaS Portal Configuration
	Access Solution Configuration Information
	Providing Connection Information
	Salesforce Authentication
	Rule Execution Service Authentication
	Endpoint Override Configuration (Optional)

	Appendix H: Named Credential Configuration
	Setting up the Named/External Credentials
	Providing Named Credential Access via Permission Set
	Legacy Named Credential Configuration

	Appendix I: Salesforce and Rule Execution Service Event Logging
	InRule Salesforce Logging
	Enable InRule for Salesforce App Logging
	Viewing InRule for Salesforce App Log

	Rule Execution Service Event Log
	Viewing Application Event Logs
	Adjusting Logging Levels
	Entity Loading Log

	Appendix J: New Releases and Upgrading Versions
	Release History
	Version Compatibility Considerations
	SaaS Upgrades
	Execution Service App Settings
	irX Salesforce Login Updates
	Default Rule App Label Change
	InRule Log Entity
	Named Credential Changes
	Deleting the InRule Package

	Appendix K: License Management
	Uploading a License File
	Azure App Service Editor
	FTP

	Appendix L: Known Issues, Limitations and Troubleshooting
	API Authentication to Salesforce
	Security Tokens
	Multi-Factor Authentication

	Apex Callout Timeout
	Salesforce API Limits
	Multiple Collections with the Same Name
	Application Insights Location Error
	Performance
	Azure Platform
	Apex Trace Log
	Request and Response Message Size Limitations
	Enable Background Compilation
	Disabling State Refresh
	.Net Function Assembly Libraries
	User-Defined Functions

