

InRule® for Salesforce Deployment Guide

Document Updated against InRule v5.6.0

Document Updated against InRule for Salesforce v2.8.0

InRule does not upgrade this document after each Platform release, please see release notes for individual versions

if the version that you are using does not match the versions listed above.

If you are working with earlier versions of any of the above products, the information in this document may not apply

to you. Please check to see if earlier documentation is available to cover your needs.

CONFIDENTIAL Any use, copying or disclosure by or to any other person than has downloaded a trial version of InRule or signed

an NDA is strictly prohibited. If you have received this document by any other means than a download or an email from an InRule

employee, please destroy it retaining no electronic or printed copies.

© Copyright 2020 InRule Technology, Inc.

Microsoft® is a registered trademark of Microsoft Corporation

Salesforce® is a registered trademark of Salesforce.com, Inc.®

All rights reserved. No parts of this work may be reproduced in any form or by any means – graphic, electronic, or mechanical,

including photocopying, recording, taping, or information storage and retrieval systems – without the written permission from InRule

Technologies, Inc.

InRule, InRule Technology, irAuthor, irVerify, irServer, irCatalog, irSDK and irX are registered trademarks of InRule Technology,

Inc. All other trademarks and trade names mentioned herein may be the trademarks of their respective owners and are hereby

acknowledged.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility

for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs

and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other

commercial damage caused or alleged to have been caused directly or indirectly by this document. The publisher and author

reserve the right to make corrections, updates, revisions, or changes to the information contained herein. InRule Technology, Inc.

does not warrant the material described herein to be free from patent infringement.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 2 of 85

Table of Contents

Table of Contents .. 2

1 Introducing InRule® for the Salesforce Platform ... 3

2 Understanding your options .. 4

2.1 Salesforce – PaaS with Microsoft Azure ... 4

2.2 Salesforce - with IIS On-Premises Rule Execution Service .. 4

3 Performing the Installation .. 5

3.1 An overview of the Components needed .. 5

3.2 Gathering prerequisites ... 6

3.3 Deploying and Configuring Components .. 11

3.3.1 Catalog App Service ... 11

3.3.2 Rule Execution App Service for Salesforce .. 14

3.3.3 Upload License file .. 20

3.3.4 InRule for Salesforce App ... 21

Appendix A: Additional Resources ... 32

InRule’s Support Website .. 32

InRule’s Support Team ... 39

InRule’s ROAD Team .. 39

InRule Training Services ... 39

Appendix B: Anatomy of a Request for Execution of Rules Diagram ... 40

Appendix C: irX General Integration Concepts ... 41

Appendix D: Accessing Salesforce Directly from Rule Helper.. 42

Appendix E: Methods for Executing Rules from Salesforce ... 50

1 Adding a Lightning Button ... 50

2 Adding a Classic UI Button ... 54

3 Executing Rules from Apex ... 57

4 Executing Rules from Triggers .. 59

5 Executing Rules from Lightning Flow .. 68

Appendix F: Azure App Service Plan Configuration ... 72

Appendix G: Azure Application Insights Configuration ... 75

Appendix H: Endpoint Override Configuration .. 77

Appendix I: Salesforce and Rule Execution Service Event Logging .. 79

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 3 of 85

1 Introducing InRule® for the Salesforce Platform

InRule provides InRule® for the Salesforce Platform to enable rule execution integration with Salesforce.

This Salesforce package and solution framework serves as a runtime companion to the irX® for the

Salesforce Platform rule authoring extension

This guide focuses on the deployment of the Platform to your environment. While there are a number of

options available when it comes to how you choose to integrate InRule with Salesforce, this guide details

the primary deployment path for cloud-based integration with Microsoft Azure ®.

Before beginning this guide, you may first want to familiarize yourself with the irX for the Salesforce

Platform product by reading the irX for the Salesforce Platform Help Documentation.

This document also provides an addendum, Appendix E: Methods for Executing Rules from Salesforce

that discusses the different options available to you for running rules beyond what this Deployment Guide

covers. It is a good next step for implementers who are looking for advanced options for running rules.

If you are interested in getting rule execution integration working between InRule and Salesforce as

quickly and easily as possible, this guide is the best place to start!

Additional material is available on the Downloads section of our support website. Please see the

Additional Resources section of this document for support website detail.

This guide assumes that the reader has basic familiarity with Salesforce, irAuthor® and irX for the

Salesforce Platform.

• Important: The InRule® for the Salesforce® Platform plugin is comprised of several Apex
components. Apex is not supported by the Salesforce Professional Edition, thus InRule
cannot function in a Professional Edition environment. The InRule for Salesforce App can
only be deployed to Salesforce Unlimited and Developer Edition orgs, where Apex is
supported.

• Important: Not all Salesforce environments support API access. However, InRule® for the
Salesforce® Platform requires a Salesforce instance that supports the API. If you attempt to
connect with an instance that does not support this access, you will receive an error when
connecting that contains information such as "The REST API is not enabled for this
Organization." The edition types that do NOT include API access are Contact Edition, Group
Edition and Professional Edition. Please refer to official Salesforce documentation for up-to-
date information as this list is subject to change.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 4 of 85

2 Understanding your options

Salesforce is available only as an online SaaS offering, but the Rule Execution Service and Catalog

Service components of InRule for Salesforce can be hosted anywhere an IIS site can be deployed. This

guide assumes deployment in Azure, but an on-prem environment can also be used if required.

2.1 Salesforce – PaaS with Microsoft Azure

The suggested setup is to install InRule using a Platform-As-A-Service (PaaS) model on Microsoft Azure.

This document discusses the following three components:

1. Catalog App Service and Azure SQL Database

2. Rule Execution App Service for Salesforce

3. InRule Decision Client package for Salesforce

Section 3 of this document, Performing the Installation: In Azure, provides a complete walkthrough for

setting up each of these components.

Appendix B: Anatomy of a Request for Execution of Rules Diagram contains a more complete diagram

depicting how a standard request navigates through components.

2.2 Salesforce - with IIS On-Premises Rule Execution Service

If for any reason you can’t use Azure App Service, the Rule Execution Service and Catalog Service can

also be installed in an on-prem environment, or in any IaaS server configured with IIS. The following three

components are required:

1. Catalog Web Service and Database

2. Rule Execution Web Service for Salesforce

3. InRule Decision Client package for Salesforce

Installation Documentation and InRule Installer, which will be used to install the Catalog Service, are

available on our support website’s downloads section and provide instructions for setting up the catalog.

Detailed installation steps are not included with this guide, but the InRule.Salesforce.WebService.zip

package in the RuleExecutionAzureService folder can also be deployed in an on-prem environment. This

is a Web Deploy package, so it can be deployed via MSDeploy or by copying the contents to an IIS Site.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 5 of 85

3 Performing the Installation

This section discusses the steps needed to integrate InRule with the Salesforce Platform. Using this

scenario InRule components are hosted on Microsoft Azure.

3.1 An overview of the Components needed

This guide will provide the instructions for setting up all the components below:

Catalog App Service and Azure SQL Database

A Catalog service will be used to store Rule Apps that will be consumed by the Rule Execution App

Service. This Catalog Service will be hosted as an Azure App Service. The back end of the Catalog

Service utilizes an Azure SQL Database for retrieval and persistence of Rule Applications.

Rule Execution App Service for Salesforce

The Rule Execution App Service is responsible for loading Salesforce entity data, executing rules against

loaded data, and responding to Salesforce with rule execution results.

InRule for Salesforce App

The InRule for Salesforce App contains Apex classes, as well as custom settings and objects. It is

configured to communicate with the execution service over REST.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 6 of 85

3.2 Gathering prerequisites

This section reviews what you will want to have prepared before you begin with the integration steps in

the next section.

Required Files

The following file should be downloaded from our support website’s downloads section before you begin:

• InRule for Salesforce.zip

After you have downloaded this file, but before extracting, make sure that you go to the file properties for

the zip and select Unblock. If the zip file is not unblocked before extracting, the deployment scripts will

not be able to execute successfully.

After unblocking the zip file, extract the contents to a working folder. When you are finished, you should

have a directory structure that looks like this:

│ InRule for Salesforce.zip

│

└───InRule for Salesforce

 │ readme.txt

 |

 ├───RuleApplications

 │ SalesforceRules.ruleappx

 |

 ├───RuleExecutionAzureService

 │ azuredeploy.json

 │ azuredeploy.parameters.json

 │ InRule.Salesforce.WebService.zip

 │

 └───RuleHelperDeployment

 InRule.Salesforce.RuleHelper.dll

 ...(many other supporting files)

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 7 of 85

Rule Authoring Environment

A rule authoring environment is used to upload a Rule Application to your Catalog Service. A rule

authoring environment is a machine or virtual machine where irAuthor has been installed with the irX for

the Salesforce Platform extension. If you followed the instructions outlined in irX for the Salesforce

Platform Help Documentation then you should already have a rule authoring environment available to

you.

We have made it a point to call out the rule authoring environment separately because it is important to

be aware of the licensing implications of this step. You will need to utilize an irAuthor license and an irX

for the Salesforce Platform license to activate the related components in the authoring environment. If you

are a system administrator who does not intend to perform rule authoring activities after the deployment is

up and running, you can either chose to borrow an environment from someone who will use a rule

authoring environment, or you will want to be sure to deactivate your license when you’re finished with

your deployment responsibilities.

Administrative Accounts

Salesforce API Credentials: You will need to configure an API token and Connected App within your

Salesforce instance for use in both irX and the Rule Execution Service. When authoring in irX you will

typically use your personal account, but the execution service will typically use a separate service

account. You will need to generate an API token for each account you want to use, but you can use the

same Connected App if desired.

If the account does not already have an API token, then log into the Salesforce portal and navigate to
User menu → My Settings → Personal → Reset My Security Token. You should receive an email within a
few minutes that contains an API token.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 8 of 85

Next, create a new Connected App in Salesforce that is configured for OAuth authentication. Navigate to
Setup → Create → Apps → Connected Apps → New and create a new app. Fill out the Basic Information
and configure OAuth authentication. The Rule Execution Service and irX use the Username-Password
authentication flow, so there is no callback URL, but because Salesforce requires this field to be
populated, enter any properly formatted URL; it will not be used. Also, be sure to add ‘Full access’ to the
Selected OAuth Scopes.

After saving, select the newly created Connected App and inspect the OAuth settings. Record the
Consumer Key and the Consumer Secret.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 9 of 85

Once you’ve completed these steps, you should have the token, consumer key and consumer secret, all
of which are required for authentication with Salesforce in addition to the username and password.

Username and Password for the Rule Service: The rule execution service is protected using basic
authentication. You will need to choose a username and password when setting up the service in Azure,
and use those same credentials when configuring Salesforce later.

Administrative Password to use for SQL Server: You should decide what username and password

you want to use for administrative privileges on the SQL Server. You will use this password when

following the referenced catalog setup guide.

** This walkthrough will utilize the above administrative login and password for the Catalog Service to

connect to the SQL Server Database. In a more secure environment, a separate SQL User should be

created that only has access to the single database needed by the catalog. It is up to the reader of this

document to go this more secure route.

Administrative Password to use for Catalog Service: You should decide what username and

password you want to use for administrative privileges within irCatalog. You will use this password when

following the referenced catalog setup guide and will need to provide it when deploying the Execution

Service.

** This walkthrough utilizes the default login of ‘admin’ and password of ‘password’. It will be up to the

reader to go through the process of utilizing the Catalog Manager to change these credentials to be more

secure.

Administrative Login and Password for Microsoft Azure: You must have a username and password

that will be used to perform administrative tasks within Microsoft Azure.

InRule Azure License File

You will need a special .xml file used for licensing InRule in an Azure cloud environment. This may have

been provided with your InRule Welcome package. You can contact support@InRule.com if you have

questions about where to get your license file.

mailto:support@InRule.com

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 10 of 85

Deciding resource names

The following worksheet can be used to decide what to name Azure resources as you go through this

Guide.

Many of these resources must have names that are unique in the world; they are hosted on Microsoft

Azure and are given domain names that match. We recommend creating a “Base” name that does not

exceed 14 characters. We recommend encoding an organization name, an application name, and an

environment name into this ‘Base’ name. For Example:

{ApplicationAbbreviation}{OrganizationAbreviation}{EnvironmentAbreviation}

MyAppInRuleDev

12345678901234

You can choose to follow this convention or invent your own.

Resource and Description

Example Name

Base Name

MyAppInRuleDev

Azure Resource Group Name

MyAppInRuleDevResourceGroup

Azure SQL Server Name
must be lower case

myappinruledevsqlserver

Catalog Database Name

MyAppInRuleDevCatalogDb

Catalog App Service Name

MyAppInRuleDevCatalogService

Rule Execution App Service Plan Name

MyAppInRuleDevRuleExecutionAppServicePlan

Rule Execution App Service Name

MyAppInRuleDevRuleExecutionAppService

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 11 of 85

3.3 Deploying and Configuring Components

3.3.1 Catalog App Service

Installing the Catalog App Service

The first major objective for a Salesforce implementation is the deployment of a Catalog service to

Microsoft Azure.

During this process, you will be creating:

• An Azure SQL Server Database

• An Azure App Service to host the InRule Catalog in the Azure cloud

When you are finished, you should be able to connect to this app service from a locally installed copy of

irAuthor, and successfully save a RuleApp to the catalog.

The full process of installing the Catalog in Microsoft Azure is outlined in the documentation found on the

InRule AzureAppServices GitHub, which can be found here:

https://github.com/InRule/AzureAppServices#ircatalog

Pleasure ensure you are installing the irCatalog service, not the irServer Rule Execution Service, which is

found on the same page and is not compatible with Salesforce.

Testing the Catalog App Service by uploading the starter Rule App

At the conclusion of the installation process outlined above you should have a Catalog URI, Username,

and Password to use to connect to the catalog service.

Next, we will utilize your rule authoring environment to upload the Rule Application that you extracted into

your working directory at:

\InRule for Salesforce\RuleApplications\SalesforceRules.ruleappx

1: Navigate to this file in your rule authoring environment and double click on it,

this will open the file with irAuthor.

https://github.com/InRule/AzureAppServices#ircatalog

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 12 of 85

2: Save the Rule Application by choosing File → Save As →Save to Catalog

3: Choose Add Catalog, enter connection information for the Catalog Server that

you deployed, and then select Use This.

4: Save with the name SalesforceRules and the Label LIVE

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 13 of 85

Save the Rule Application to the Catalog using the name of SalesforceRules. We must also be sure to

label this Rule Application with the text ‘LIVE’, as configured in the app service configuration. Be sure not

to forget this label, it is a small but important step!

At this point, if you can click OK without an error, we have successfully saved the SalesforceRules Rule

App to the new Catalog that you have created. If you have any trouble getting to this point, it is advised

that you resolve any issues with the Catalog before attempting to continue.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 14 of 85

3.3.2 Rule Execution App Service for Salesforce

Next, we’ll deploy the InRule Rule Execution service as an Azure App Service, along with all its Azure

resource dependencies. To make this process easier, we’ll be using an Azure Resource Manager (ARM)

template, which allows us to deploy and configure all the Azure resources the Rule Execution Service

relies on. InRule for Salesforce

There are a number of methods for deploying an ARM template; this documentation will detail two: via

Azure CLI and via PowerShell. Alternatively, while this document does not provide a walkthrough of it,

the ARM template provided is configured to work with Azure Portal deployment. For an overview of how

to leverage this, reference Microsoft’s documentation: https://docs.microsoft.com/en-us/azure/azure-

resource-manager/templates/deploy-portal

1: Locate azuredeploy.parameters.json

Before deploying the ARM template, we need to define certain parameters.

Locate the azuredeploy.parameters.json file in the RuleExecutionAzureService folder within the InRule for

Salesforce.zip file downloaded in Section 3.2: Required Files.

2: Update parameters

Open the file with your text editor of choice and edit the parameters listed below

https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/deploy-portal

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 15 of 85

1 appServiceName Provide a name for the Azure App Service that the Rule Execution Service will run on.

Note, by default, an App Service Plan will be created by the ARM template. The App
Service Plan will follow the naming convention of the App Service name you provide here,
with “Plan” appended to the end (ex. appServiceNamePlan). If you wish to deploy your app
service to an already existing App Service Plan rather than create a new one, or for more
information on the necessary configurations for the App Service Plan, reference Appendix
F: Azure App Service Plan Configuration

2 catalogUri The URI for the Catalog Service that will be used
Example:
https://myappinruledevcatalogservice.cloudapp.net/service.svc

3 catalogUser Username for Catalog Service, default value is ‘admin’.

4 catalogPassword Password for Catalog Service, default is ‘password’, please change this using the catalog
manager!

5 sfLoginUrl The default for this is set to https://login.salesforce.com/services/oauth2/token, but you can
change this to the relevant URL for your instance if you are deploying to something like a
sandbox instance

6 sfUsername Salesforce username for the service account used to connect from the execution service to
the Salesforce API

https://myappinruledevcatalogservice.cloudapp.net/service.svc
https://login.salesforce.com/services/oauth2/token

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 16 of 85

7 sfPassword Password for the Salesforce service account

8 sfSecurityToken API token for the Salesforce service account

9 sfConsumerKey OAuth consumer key for the connected app

10 sfConsumerSecret OAuth consumer secret for the connected app

11 executionServiceUsername Username used to secure the rule service. This same username will need to be provided to
Salesforce during configuration

12 executionServicePassword Password used to secure the rule service. This same password will need to be provided to
Salesforce during configuration

13 inRuleVersion (To deploy most
modern version, leave as default
value)

This parameter allows the user to configure what version of the InRule Rule Execution
Service they wish to deploy. By default, this parameter will be set to the most modern
version.

14. appServicePlanName (If you wish
to override the default value)

Provide a name for the Azure App Service Plan. If you leave this value blank it will be
derived as the App Service name you provide above, with “Plan” appended to the end (ex.
appServiceNamePlan)

Note, by default, an App Service Plan will be created by the ARM template. If you wish to
deploy your app service to an already existing App Service Plan rather than create a new
one, or for more information on the necessary configurations for the App Service Plan,
reference Appendix F: Azure App Service Plan Configuration

15. appInsightsInstrumentationKey If you want to use Application Insights as a log sink in addition to the app service logging
already enabled, provide an instrumentation key from an existing Application Insights
resource here. When providing a value for the ‘appInsightsResourceName’ parameter,
leave this value blank, as the template will automatically fill this value in for you based on
the newly created resource Rule Execution Service Event Log.

16. appInsightsResourceName If you want to use Application Insights as a log sink in addition to the app service logging
already enabled, but do not already have an Insights resource that you want to use, specify
a name for a new resource here. Specifying a value for this parameter will create a new
Application insights resource with the given name and populate the instrumentation key app
setting on the app service with the key from this new resource. If you provide a value for
this parameter, do not provide a value for appInsightsInstrumentationKey.

Once you’ve finished configuring your parameters, save the completed parameters file and keep a spare

copy on hand for future upgrades or automation.

3: Option 1: Deploy ARM Template with Azure CLI

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The

following will detail how to use the Azure CLI to deploy the ARM template (Note, this section assumes

Azure CLI has already been installed):

3.1 Run Command Prompt or Powershell

3.2 Navigate to the RuleExecutionAzureService folder

3.3 Enter “az login” to login into Azure

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 17 of 85

3.4 Enter your Azure admin credentials to login when prompted in the

new browser window opened

3.5 Select the appropriate subscription

If your Azure account has access to multiple subscriptions, you will need to set your active

subscription to where you create your Azure resources:

3.6 Create Resource group

If you have not created a resource group yet, you will need to create one. You will need to define a

name and a geographic location for where to host the resource. This example uses Central US:

3.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 18 of 85

4: Option 2: Deploy ARM Template with Powershell

(If you have already deployed the ARM template via Azure CLI in the section above, this section is not

necessary)

Now that the ARM template is configured, we’ll deploy it to get the resources up and running. The

following will detail how to use Powershell to deploy the ARM template (Note, this section assumes Azure

PowerShell has already been installed):

1.1 Run Powershell

1.2 Navigate to the RuleExecutionAzureService folder

1.3 Enter “Connect-AzureRmAccount” to login into Azure

1.4 Enter your Azure admin credentials to login when prompted in the

new browser window opened

1.5 Select the appropriate subscription

Upon logging in, your default subscription information will be displayed:

If this is not the subscription you want to deploy to, you can use the “Select-AzureRmSubscription”

cmdlet to change the targeted subscription. Just replace “SubscriptionNameHere” with the name of

the desired subscription:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 19 of 85

4.6 Create Resource Group

If you have not created a resource group yet, you will need to create one. You will need to define a

name and a geographic location for where to host the resource. This example uses Central US:

4.7 Execute the following command to deploy the ARM template

Replace “ResourceGroupName” with the name of the Azure Resource Group you want to deploy to

Observe that the template deploys with no errors

5: Verify Setup

Navigate to the Azure portal and locate the deployed App Service

Ensure that all of the app settings are configured correctly for your setup

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 20 of 85

3.3.3 Upload License file

Regardless of how you choose to deploy the ARM template, you’ll need to upload a license file to the web

app service in order for both the catalog service and the rule execution app service to properly function.

The simplest way to upload the license file is via FTP.

This example leverages Azure CLI in addition to Powershell commands. If you intend to use this

method, please run the CLI from Powershell.

Alternative approaches using Powershell only should be possible if desired but are not detailed in

this document.

First, retrieve the FTP deployment profile (url and credentials) with the az webapp deployment list-

publishing-profiles command and put the values into a variable:

Example: az webapp deployment list-publishing-profiles --name contoso-execution-
prod-wa --resource-group inrule-prod-rg --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

az webapp deployment list-publishing-profiles --name WEB_APP_NAME --resource-group
RESOURCE_GROUP_NAME --query "[?contains(publishMethod,
'FTP')].{publishUrl:publishUrl,userName:userName,userPWD:userPWD}[0]" | ConvertFrom-
Json -OutVariable creds | Out-Null

Then, upload the license file using those retrieved values:

Example:
$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/InRuleLicense.xml");$client.UploadFile($uri,
"$pwd\InRuleLicense.xml");

$client = New-Object System.Net.WebClient;$client.Credentials = New-Object
System.Net.NetworkCredential($creds.userName,$creds.userPWD);$uri = New-Object
System.Uri($creds.publishUrl + "/InRuleLicense.xml");$client.UploadFile($uri,
"LICENSE_FILE_ABSOLUTE_PATH")

https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles
https://docs.microsoft.com/en-us/cli/azure/webapp/deployment?view=azure-cli-latest#az-webapp-deployment-list-publishing-profiles

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 21 of 85

3.3.4 InRule for Salesforce App

At this point, all the Azure requirements are met. The execution service should be listening for incoming

communication from Salesforce. We must now setup the InRule for Salesforce App, which is done with a

managed Salesforce package.

1: Install from AppExchange:

InRule for Salesforce can be installed from the Salesforce AppExchange marketplace. You can either

search for ‘InRule for Salesforce’ or go directly to the listing here:

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD When you get

to the listing page, you’ll need to select ‘Get It Now’ and choose the org you want to install the package in.

https://appexchange.salesforce.com/appxListingDetail?listingId=a0N3A00000FMd5cUAD

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 22 of 85

Once you’ve selected an org and logged in, you’ll see a screen prompting you to install the package.

Select ‘Install for all users’ and hit ok. Installing this package installs all the components required for

integrating with InRule, including a configuration app, Apex classes, and custom settings and objects.

Once the installation is complete, you will need to configure the connection to the execution service.

2: Navigate to the InRule for Salesforce App

In Lightning view, select the Salesforce App Launcher button in the top right of the home screen and

select “View All”

Select the InRule App

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 23 of 85

This app provides useful information on how to get started using InRule for Salesforce, as well as quick

links to important configuration pages and logging.

3: Configure the InRule App

Named Credential

Next, we need to create a Named Credential in Salesforce. This will be used by the Apex code to make

secure HTTP request to the Rule Execution Service.

In the InRule App, select the “Configuration” tab

Under the “Named Credentials” header, click the link the “Edit Named Credentials” link

Press the “New Named Credential” button

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 24 of 85

Configuration
Form Fields

Label This should be set to InRule Rule Execution Service. This value is not required to
match exactly, but if you choose something else, make sure to replace the
autogenerated Name with the correct one

Name This value must be set to InRule_Rule_Execution_Service. The name field is
how the Named Credential is retrieved in the Apex code, so this needs to match
exactly

URL URL for the rule service in Azure. This can be found in the Azure portal in the
overview section for the app service created earlier. For example,
https://sampleservice.azurewebsites.net

Identity Type Named Principal

Authentication
Protocol

Password Authentication

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 25 of 85

Username Username for accessing the rule service. This should be the same value chosen
earlier for the ‘ruleServiceUsername’ parameter when setting up the service in
Azure

Password Password for accessing the rule service. This should be the same value chosen
earlier for the ‘ruleServicePassword’ parameter when setting up the service in
Azure

Callout Options Make sure ‘Generate Authorization Header’ is checked

Custom Setting

Once you have set up the Named Credential, navigate back to the InRule App and return to the

configuration tab. Under the “Custom Settings” header, click the “Custom Settings” shortcut link to

configure your default rule app name and logging level.

Click on the InRule label

Click “Manage”

Click “New”

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 26 of 85

Configuration
Form Fields

Rule App Name The name of the rule app that will be loaded by the Rule Execution Service when
running rules

Logging Level An integer that denotes the amount of information to log after rule execution
completes. This is a default value that will be used by all invocations of the
DecisionClient, but can be overridden in the calling script. Results are written to
the InRule_Log__c object. Values can be 0, 1, 2, or 3:

• 0 – disable all logging

• 1 – Logs errors and a minimal amount of information on successful
requests

• 2 – Logs errors, request information, rule engine notifications, and
rule engine validations

• 3 – Logs the same information as 2, but also includes JSON from the
HTTP request and response payloads

Once configured, press Save.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 27 of 85

4: Verify a successful deployment

Now that all of our resources are properly deployed and configured, we can test to ensure they’re all

working as they should be. Navigate back to the InRule App and then the Configuration tab once again.

Under the Named Credential Header, find the “Test Connectivity” button and press it. This button will

make a mock request out to your Rule Execution Service to verify that the InRule App and all related

Azure resources are deployed and configured properly.

If successful, you should get 3 green notifications like below:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 28 of 85

5: Add the Run Rules button

As a part of the deployment of the InRule for Salesforce App, a new “Run Rules” Lightning component

has been installed. To add and configure this component to an entity or entities, you can follow the steps

below. This example uses the Account entity, but this process should work for any entity, default or

custom.

Alternatively, a sample Run Rules JavaScript button has now been installed for the account and contact

entities in the Classic (non-Lightning) UI. For guidance on how to add a Run Rules button in the Classic

UI, refer to Appendix E: Methods for Executing Rules from Salesforce.

To begin, navigate to the entity you wish to add the button to. Note that you will have to add the button to

each entity individually.

Once on the desired entity page, find the settings icon in the top right corner and select Edit Page.

On the left-hand side of the page in the Lightning Components section scroll to the bottom of the page

until you find the InRule_RunRules in the Custom-Managed Section

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 29 of 85

Note: If you have not setup your Saleforce domain, you will see this message in the Custom-Managed

Section.

Simply follow the link to setup your domain. Once it has been set and you have logged in with the new

domain come back to edit page and you should now see the InRule_RunRules Lightning Component.

Drag the InRule_RunRules Lightning component to the desired location on the page view. Once you

have placed the component, click on it and a menu bar on the right will appear with two available

configuration values.

The first configuration field, Rule Application Name, allows you to define a Rule Application to use for this

specific lightning component. Placing a value in this field will override the Rule Application you have

defined in your Custom Setting as the default. Leave this field blank to use the default configured Rule

Application.

The “RuleSet Name(s)” field accepts a comma delimited list of RuleSet names. Adding multiple rule sets

here will create multiple Run Rules buttons for each defined RuleSet on the page. Leaving this field blank

will leave only the singular “Run Rules” button, and this button will execute the Default RuleSet for the

given entity. The Default RuleSet is defined as the entity’s name + “DefaultRules.” For example, if you are

adding the Lightning component to the Account entity, the RuleSet name it will default to if this field is left

blank is “AccountDefaultRules.”

If no RuleSets are defined, it will create 1 button that uses the default RuleSet for the entity:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 30 of 85

If one RuleSet is defined, will create 1 button that will use that defined RuleSet:

If 2+ RuleSets are defined, will create a button per RuleSet that will use the defined RuleSets.

Once you have configured your RuleSets, click save in the top right corner. It will prompt you to activate

this page to make it visible to your users, click activate.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 31 of 85

Salesforce will now ask for the scope to activate the record page. Select the desired scope and click

Assign and then save on the subsequent prompt.

Navigate back to the main entity page and the component should appear.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 32 of 85

Appendix A: Additional Resources

Having trouble? Relax! InRule offers many additional resources to help you get InRule correctly

integrated with Salesforce.

InRule’s Support Website

InRule’s support website can be found at http://support.inrule.com. If you do not already have a login for

our support site, the client administrator at your company has the ability to create an account for you. If

you are unsure of who your client administrator is, please email support@inrule.com.

The InRule Support Website has three different areas that readers should be aware of:

1. Downloads

2. Documentation

3. Forums

http://support.inrule.com/
mailto:support@inrule.com

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 33 of 85

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 34 of 85

The Downloads section

The download section of the Support Website contains numerous resources that will likely be of interest

to you:

InRule Installer*

Filed under the ‘InRule’ section of the downloads page, the InRule installer package will launch a

graphical user interface that will walk the user through installing many of InRule’s offerings. These

offerings include both irAuthor which is used to edit Rule Applications, and irX for the Salesforce

Platform, which is an extension to irAuthor that allows synchronizing schema between Rule

Applications and Salesforce.

*It is recommended that the reader of this document has established a Rule Authoring Environment

by installing both irAuthor and irX for the Salesforce Platform before attempting to deploy InRule for

Salesforce.

irX for the Salesforce Platform Help Documentation

Filed under the ‘InRule for Salesforce’ section of the downloads page. This document discusses

how to utilize the irX for the Salesforce Platform irAuthor extension to connect to Salesforce in a

rule-authoring environment to synchronize rule application schema objects against Salesforce

entities and to test Rule Applications directly against data coming from the Salesforce environment.

InRule for Salesforce Deployment Guide

This is the guide that you are reading now. The intention of this guide is to give a complete

reference for those wanting to get the Platform up and going as quickly as possible without

deviating from what we consider to be the most common deployment scenario.

This is a fantastic place to start if you already have some familiarity with irX for the Salesforce

Platform and are ready to deploy InRule for Salesforce as a runtime companion.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 35 of 85

InRule for Salesforce

This downloadable archive contains all of the following located off of the root:

• Rule Applications \ SalesforceRules.ruleapp: This Rule App is intended to be used both

to test a basic deployment of the Platform, but also to serve as a starting point for authoring

further rules against your Salesforce environment.

• Rule Execution Azure Service: This folder contains the app service package and

configuration files that will be needed to deploy the Rule Execution App Service to Azure as

discussed elsewhere in this document.

• RuleHelper Deployment: This folder contains the .NET assemblies necessary to utilize the

Rule Helper library to dynamically query Salesforce for information during the execution of

rules. RuleHelper is included with the Rule Execution Service, but also made available here

for deploying to irAuthor's EndPointAssemblies folder. For more information about using the

RuleHelper, please refer to Appendix D: Accessing Salesforce Directly from Rule Helper

• ReadMe.txt: This file contains some information about this Platform, including historic

release notes, product version information, and license information.

Catalog App Service – Azure Package and Config File

Found in the ‘InRule for Microsoft Azure’ section of the downloads page, this archive contains both

the app service package and app service configuration files that you will need to perform an Azure

based installation of irCatalog.

Catalog App Service – Install Documentation

This document will discuss how to install InRule’s irCatalog in Microsoft Azure using a PaaS model.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 36 of 85

The Documents section

The documents section of the Support Website contains additional documentation about how the various

components of InRule operate.

Although the documents section does not contain documentation that discusses integration with

Salesforce (that documentation can be found in the downloads section), it does contain the following

three areas of interest:

1. Online Authoring Help: This document discusses anything you would need to know about how to

author Rule Applications. The majority of this document applies to utilization of irAuthor, InRule’s

custom graphical authoring product.

2. Online SDK Help: InRule exposes an extensive .NET based API. This document discusses the

use of the full SDK for use by software developers that would like to integrate with InRule.

3. Miscellaneous documentation section: Here you will find a variety of special interest documents,

such as an installation guide, an implementation guide, and a guide that focusses on InRule’s

UDF language, irScript.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 37 of 85

Online User Forums

Numerous internal resources at InRule monitor InRule Forums. This is the first place to go if you want to

benefit directly from the helpful and knowledgeable people

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 38 of 85

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 39 of 85

InRule’s Support Team

The support team at InRule is available to help with any product support

needs, troubleshooting suspected product bugs, resolving any licensing

issues, and free tele-hugs.

The best way to reach Support is through a detailed email sent to

support@inrule.com.

You can also reach our support team by calling +1 (312) 648-1800.

InRule’s ROAD Team

ROAD Services agreements can be used to engage with ROAD, InRule’s

professional services team.

ROAD can provide your organization with specialized consulting and

tailored Architecture and Authoring Guidance.

ROAD can assist with less common installation requirements, such as

deployment to third party cloud providers or integration with custom

software.

ROAD can be contacted by emailing ROADServices@InRule.com

InRule Training Services

InRule offers the following interactive training services:

• Onsite and Remote attendance courses

• Hands-On multi-day courses with interactive labs

• Virtual Express training courses delivered online for rapid knowledge

transfer

If you are interested in scheduling training services, please contact us at Training@InRule.com.

mailto:support@inrule.com
mailto:ROADServices@InRule.com
mailto:Training@InRule.com
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjV6Zio79bVAhUGS2MKHeBfAYIQjRwIBw&url=http://teckgeekz.yolasite.com/&psig=AFQjCNGQhoeRi1koExE9WyH8aOxC3uYImw&ust=1502804920316659

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 40 of 85

Appendix B: Anatomy of a Request for Execution of Rules Diagram

The steps below help to give a top-level understanding of how InRule is integrated with Salesforce.

Please note these steps are a simplification that does not cover topics like caching, iterations, and

multiple environments. It serves to show how the request moves through different Azure resources.

1. The DecisionClient in Salesforce is called by a button or event. This generates a call to the Rule

Execution App Service.

2. The Rule Execution App Service makes a request to the Catalog Service, asking for a copy of the

requested RuleApp.

3. The Catalog Service Queries its SQL Server based database for a copy of the requested RuleApp.

4. The SQL Server responds with the RuleApp.

5. The catalog service responds to the Rule Execution App Service with the RuleApp.

6. The RuleApp executes inside the Rule Execution App Service.

7. Optionally, the RuleApp has an opportunity to query Salesforce for additional data needed to execute

rules.

8. The RuleApp completed execution

9. The Rule Execution App Service relays the response to Salesforce, where the InRule for Salesforce

App synchronizes changes

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 41 of 85

Appendix C: irX General Integration Concepts

Runtime Mapping across Nested Relationships

Much like Salesforce, the InRule rule engine offers strong support for hierarchical and relational data.

Within a given Rule Application, data can be considered across parent-child relationships within a single

rule request. These relationships can take the form of Collections (1 - * relationships) or 1 – 1

relationships.

• Note: When N:N relationships are imported into InRule, they behave as 1:N Collection
relationships within the Rule Application.

In addition to the abilities of both products to handle relational data, both products also offer the ability to

declaratively configure “Entities” and “Fields”. Both products also allow for different strongly-typed Entities

and Fields to be accessed with loosely-typed SDK interfaces. Because of these inherent similarities and

flexible interfaces, it is possible to build a reusable mapping component that can convert any given graph

of loosely-typed Salesforce Entities to InRule Entities, and vice versa.

Controlling irVerify Behavior with Load, Save and Inactive Record

Settings

When working with an Entity Schema composed of many related Salesforce Entities, it is often useful to

have explicit control over which relationships are either automatically loaded or automatically considered

in change detection for persistence. If a relationship is skipped during the initial load routines, then it is

available to be conditionally populated later using rules.

In the irX rule authoring ribbon, there are two buttons that give the rule author the control to denote if a

relationship should be automatically loaded or saved excluded.

• Note: Automatic loading and saving is enabled by default for all relationships that are
imported from Salesforce. The rule author can opt-out of these automatic behaviors by
unselecting “Auto Load” or “Auto Save”. When these buttons are selected, metadata
attributes are written into the Rule Application for the given relationship. These metadata
attributes are used by the irVerify data loader when recursively loading data or detecting
changes for persistence.

• Important: If loading or saving is disabled for a given relationship, then it is also disabled for
all Entities that are children of that relationship.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 42 of 85

Appendix D: Accessing Salesforce Directly from Rule Helper

In the default Rule Execution setup, all relationships between Entity types must be established before

these entities can be used by the rule app. This behavior is intuitive, but it is not ideal for all business

problems. InRule for Salesforce provides a ‘Rule Helper’ assembly that can be used directly in a rule app

and allows rules to load, compare, and assign data that is not related in Salesforce before rules are

executed.

When to use the Query from Rules Approach

The query from rules approach adds value for the following business problems:

• The rules need to reference “lookup” information that may be in a list or set of Entities that are not
specifically related to the current Entity hierarchy

• The purpose of rules is to create new relationships between Entity instances that already exist in
Salesforce

• The rules need to compare many combinations of unrelated Salesforce Entities and produce
results about best possible matches or scores

• A custom filter is required when loading data for 1:N or N:N relationships

Working with Disconnected Fields when Loading and Saving Data

One of the most important integration concepts when loading Salesforce data from rules is the notion of

“Disconnected” Fields and Fields that have “Auto Load” and “Auto Save” disabled.

irX allows the rule author to explicitly control the “Auto Load” and “Auto Save” behaviors of Fields that are

connected to Salesforce.

The example below shows a Collection named CandidateProducts. Since the Collection is not marked

with a blue triangle, it is not considered to be attached to Salesforce.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 43 of 85

• Important: Although Entity Fields and Collections may be “Disconnected” from Salesforce,
the types contained by the Collections can be set to types that were imported from
Salesforce.

• Note: If a Field is added to the schema using irAuthor, then it will be disconnected from
Salesforce. If a Field has been imported from Salesforce using irX, then it can be
disconnected from Salesforce by clicking the “Disconnect Item” button in the irX ribbon.

• Important: Two additional settings appear in the irX ribbon that offer additional control over
automatic loading and saving behaviors for Fields that remain connected to Salesforce. In the
example below, both buttons are “lit up”, which denotes that the settings are enabled. By
default, automatic loading and saving is enabled for all Fields that are connected to
Salesforce.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 44 of 85

Integrating the Rule Helper Component

InRule provides a sample rule application (SalesforceRules) that is already configured for RuleHelper

usage. You can simply edit this rule app, or, if you wish to integrate the Rule Helper into an existing rule

app, you can copy both the UDF Library “RuleHelper” and End Point ‘SalesforceHelper” from the

SalesforceRules rule to another rule application.

If you wish to manually create the UDF Library and End Point in irAuthor, follow the steps below.

1. Create a new rule app using the irX add-in for irAuthor.

2. Create a new “.NET Assembly Function Library” end point and bind the end point to the
InRule.Salesforce.RuleHelper.dll assembly. Select the SalesforceDriver class and then select the
methods that should be callable from rules. Edit the name of the end point to “SalesforceLib” or
similar. Select the methods from the SalesforceDriver that are needed for the Rule Application.
You do not need to select all the methods—only import the methods that will actually get used by
rules. Additional methods can always be imported later be revisiting the endpoint screen and
reloading the assembly.

3. Add a User Defined Function library and set the name to “SalesforceHelpers” or similar. This

library will contain functions that the rules will call to query Salesforce.

4. Add a User Defined Function to the new library. The example below shows a UDF that will be
used to execute the QueryCollection method on the SalesforceDriver. Fill out the UDF with script
that will call a method on the SalesforceDriver.

• Note: The methods on the SalesforceDriver are designed to be reused for more than one
Entity type, Field, or set of Fields. The name of the Target Field or Collection should be
supplied as a string. When querying a Collection of results, an optional “where” clause can be
provided that will be forwarded to calls against the Salesforce SDK. In addition, an “order by”
clause can be provided to return sorted results.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 45 of 85

• Important: This integration pattern relies on the “Context” object that is available from
irScript. The Context object returns information based on the context under which a given
UDF is executed. For example, when executing an Entity Rule Set, the Context.Entity returns
a reference to the Entity against which the current Rule Set is executing. The Context and its
child properties are passed to the SalesforceDriver so it has enough information to form calls
to Salesforce and map responses back to the InRule Rule Session.

• Note: The Context.FunctionLibraries property can be used to create calls to the .NET
assembly library methods, such as the methods imported in Step 5 above. The following
script example demonstrates how to use the Context object in irScript to form a call to a static
.NET method:

Context.FunctionLibraries.SalesforceDriver.QueryCollection(Context,

Context.Entity, collectionName, filter, orderBy, connectionString);

5. Rules can now be authored to execute methods on the SalesforceDriver. These methods can be
used to load Collections, single Entities, or single Fields from Salesforce Salesforce based on
conditional logic within rules.

• Important: The Target Collection in the sample rule is called “FamilyMembers”. This is a
Field that either does not exist in Salesforce (only for use in rules), or has been imported and
then “disconnected” from Salesforce using the “Disconnect Field” button, or has “Auto Load”
disabled.

• Note: Please see the following sections for more details on the creating the “filter” clauses
similar to the one used this example.

Filtering Queries using the Where Clause Builder

When loading data from Salesforce during rule execution, it is critical that the rule author is able to author

logic to specify which Entity data to load. Using the RuleHelper, this is accomplished by allowing the rule

author to pass in a “filter” or “where” clause into the calls against the SalesforceDriver class.

During execution of the SalesforceDriver, the filter clause is parsed into an Abstract Syntax Tree (AST)

and then translated into SOQL (Salesforce Object Query Language) so it can be executed against the

Salesforce data. The filter clause is based on the InRule function syntax format.

• Note: The InRule function syntax format is used for the following reasons:

o The syntax rule format is consistent with the rule authoring experience used
throughout irAuthor

o This format can make good use of the InRule AST parser that is included as part of
irSDK

The diagram below depicts the logical flow of steps used by the SalesforceDriver and WhereClause

builder classes to query data from rules.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 46 of 85

The diagram and notes below contain some additional information about forming the filter clause in a rule:

• All the Field names that are used are the Salesforce friendly names (Salesforce Field Label) that
are used in the Rule Application. These names are mapped back to the Salesforce Field names
in the parser.

• String literals should be wrapped in single quotes, date literals should be wrapped in pound signs.

• Simple operators are supported to compare values, such as =, !=, >, < (ex. Age > 21, Name !=
‘Ralph’).

• Multiple conditions can be chained together using ‘and’ and ‘or’ keywords.

• The following keywords and operators are supported by the InRule AST parser and expression
tree translation code: =, <>, !=, +, -, *, /, or, and, xor, >, >=, <, <=, ^,

Ordering Query Results with the OrderByClauseBuilder

The SalesforceDriver class also supports the ability to control the order of the results returned from

Salesforce by passing in an optional “order by” clause. The order by clause can accept only a single Field

name, which should be the name of the Field in the Rule Application. The results are always sorted in

ascending order, unless the Field name is followed by the “desc” syntax. Please see the examples below:

To sort ascending, pass the Field name to use in the sort:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 47 of 85

To sort descending, pass the Field name to use in the sort followed by the “desc” keyword:

• Note: The “order by” clauses generally contain much simpler expressions than “where”
clauses. However, InRule syntax rules format is used for the order by clause to be consistent
with the where clause approach.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 48 of 85

Methods Available in the Rule Helper

The following table lists the public, static methods that are available in the SalesforceDriver

Method Name Description
LoadMappedChildCollection Populates a child Entity Collection based on an existing 1:N

relationship in Salesforce. The Collection is populated based on
existing parent-child relationship data in Salesforce.

LoadMappedChildEntity Populates a child Entity Field based on an existing 1:1 relationship in
Salesforce. The Field is populated based on existing parent-child
relationship data in Salesforce.

QueryCollection Populates an Entity Collection with a set of a given Entity type. An
optional filter clause (where clause) can be used to define selection
criteria for the Entity set. The Collection does not need to correspond
to a 1:N relationship in Salesforce.

QueryEntity Populates an Entity Field or variable based on a query to Salesforce.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. The Field does not need to correspond
to a 1:1 relationship in Salesforce. If more than one Entity is returned
from the query to Salesforce, then the first Entity in the set is used.

QueryField Populates a primitive Field or variable based on a query to Salesforce.
An optional filter clause (where clause) can be used to define
selection criteria for the Entity. If more than one Entity is returned from
the query to Salesforce, then the Field value from the first Entity in the
matching set is used.

Additional Flags Available to Control Loading and Caching Behaviors

in the Rule Helper

During a given query operation, there may be advanced use cases that require specific control over

loading or reloading data from Salesforce. The optional overloads of the QueryEntity and QueryCollection

methods expose a set of optional Boolean flags that help control caching and depth of loading behaviors.

The table below list these parameters:

Parameter Name Description
loadChildren Denotes if the execution service should recurse the Entity graph and

load all children. If false, no children are loaded below the Collection
Members that are loaded. The default value is true.

useCaching Denotes if previously loaded Dynamics Entities should be reused from
the InRule entity cache, or if new entity instances should be created. If
false, the original entity data will be requested from Dynamics, and a
copy of the Entity is created. The Instance ID is not set to the GUID of
the Dynamics Entity, which will also prevent changes to this entity from
being written back to Dynamics. This functionality can, for example, be
used to load the original values for an entity persisted in Dynamics
when rules are run on update and compare the original and updated
values. The default value is true.

overwriteIfLoaded Denotes if a previously loaded Salesforce Entity should be repopulated
with the latest values in Salesforce. This behavior will overwrite Field
values stored in the cache. The default value is false.

• Note: The default values should always be used for the cache settings unless there is a
specific use case that requires different behaviors.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 49 of 85

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 50 of 85

Appendix E: Methods for Executing Rules from Salesforce

Once the Salesforce components are installed, end-to-end connectivity can be tested by adding a call into
a Page Layout. Many possible approaches can be applied to call the DecisionClient Apex class—five
approaches are documented here, adding a button to the Lightning interface, adding a JavaScript button
to the Classic UI, executing rules from Apex, executing rules from triggers, and executing rules from
Lightning Flow.

1 Adding a Lightning Button

Navigate to the entity you wish to add the button to, note that you will have to add the button to each

entity individually.

Once on the desired entity page find the settings icon in the top right corner and select Edit Page.

On the left-hand side of the page in the Lightning Components section scroll to the bottom of the page

until you find the InRule_RunRules in the Custom-Managed Section

If you have not setup your Saleforce domain, you will see this message in the Custom-Managed Section.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 51 of 85

Simply follow the link to setup your domain. Once it has been set and you have logged in with the new

domain come back to edit page and you should now see the InRule_RunRules Lightning Component.

Drag the window to the desired location on the page view. Once you have placed the component, click

on it and a menu bar on the right will appear with two available configuration values.

The first configuration field, Rule Application Name, allows you to define a Rule Application to use for this

specific lightning component. Placing a value in this field will override the Rule Application you have

defined in your Custom Setting as the default. Leave this field blank to use the default configured Rule

Application.

The “RuleSet Name(s)” field accepts a comma delimited list of RuleSet names. Adding multiple rule sets

here will create multiple Run Rules buttons for each defined RuleSet on the page. Leaving this field blank

will leave only the singular “Run Rules” button, and this button will execute the Default RuleSet for the

given entity. The Default RuleSet is defined as the entity’s name + “DefaultRules.” For example, if you are

adding the Lightning component to the Account entity, the RuleSet name it will default to if this field is left

blank is “AccountDefaultRules.”

If no RuleSets are defined, will create 1 button that uses the default RuleSet for the entity:

If one RuleSet is defined, will create 1 button that will use that defined RuleSet:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 52 of 85

If 2+ RuleSets are defined, will create a button per RuleSet that will use the defined RuleSets.

Once you have configured your RuleSets, click save in the top right corner. It will prompt you to activate

this page to make it visible to your users, click activate.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 53 of 85

Salesforce will now ask for the scope to activate the record page. Select the desired scope and click

Assign and then save on the subsequent prompt.

Navigate back to the main entity page and the component should appear.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 54 of 85

2 Adding a Classic UI Button

Classic UI buttons are not included directly in the InRule for Salesforce app, but we do provide a helper

library and sample code here to make it easier to add a button to a classic form for running rules. This

button will run rules, show notifications, and refresh field changes when clicked.

To add a Classic UI button, navigate to Setup → Customize or Create, add a new Button. Set the
Behavior to Execute JavaScript and then the Content Source to OnClick JavaScript.

Within the script window, copy and paste over the sample Javascript found below:

{!REQUIRESCRIPT("/soap/ajax/33.0/connection.js")}
{!REQUIRESCRIPT("/soap/ajax/33.0/apex.js")}
{!REQUIRESCRIPT('/resource/' & LEFT(SUBSTITUTE(SUBSTITUTE(SUBSTITUTE(TEXT(NOW()),':',''),'-
',''),' ',''),10) & '000/inrule__DecisionClientHelper')}

var config = {
entityId : '{!Account.Id}',
entityType : "Account",
ruleSetName : "AccountDefaultRules"
};

var response = executeRules(config);

displayNotifications(response);

window.location.reload();

Your script window should now look similar to this:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 55 of 85

To customize this button for the specific entity type you intend to use this button for, you can alter the

“config” object in the Javascript by editing the values of the properties to match the particulars you want.

The table below includes a list of the properties that can be configured on the “config” object:

Parameter Name Description

entityId The unique Salesforce identifier for the root object in the request. This
follows the naming convention of: “entityName.Id”

objectType The Salesforce object type of the root object in the request

ruleSetName (optional) Optional. The name of an Explicit Rule Set to call as the entry point for
rule execution. If no value is supplied, then the RuleSets configured as
‘Auto’ for that entity will be executed.

loggingLevel (optional, must
be manually added to config
object)

Optional. An integer that denotes the amount of information to log after
rule execution completes. Results are written to the InRule_Log__c
object. Values can be 0, 1, 2, or 3:

• 0 – disable all logging

• 1 – Logs errors and a minimal amount of information on
successful requests

• 2 – Logs errors, request information, rule engine
notifications, and rule engine validations

• 3 – Logs the same information as 2, but also includes
JSON from the HTTP request and response payloads

Defining a logging level here will override the logging level universally
defined for the InRule for Salesforce App in the custom object settings
for a specific button.

useEntityPrefix (optional,
must be manually added to
config object)

Optional. If set to true, the DecisionClient will append the entity label to
the supplied rule set name.

ruleAppName (optional,
must be manually added to
config object)

Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button.

Once your config object has been appropriately configured, simply save your button and add it to the

entity page layout for use. The button will leverage the DecisionClientHelper static resource to handle the

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 56 of 85

communication between the Javascript button and the DecisionClient, as well as handling any

notifications returned from the rules.

To verify everything is setup correctly, open up a record for the configured object and click the ‘Run

Rules’ button you added. What will happen next is dependent on your configuring rule set, but if you are

running the included ‘AccountDefaultRules’, you should see the description of the account updated with

the current date and time.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 57 of 85

3 Executing Rules from Apex

Rule Execution is handled on the Salesforce side by an Apex class installed with the InRule for

Salesforce App called the DecisionClient. The DecisionClient is what accepts the run rules requests from

the Run Rules button and trigger requests to handle sending it along to the Rule Execution Service, but it

also accepts calls from other Apex classes. This section will document how to run rules from your own

Apex classes by calling the DecisionClient, as well as detailing what manner of response it returns.

To run rules from another Apex class, simply invoke the executeRules method in the DecisionClient with

the following call:

inrule.DecisionClient.executeRules(String eventType, String id, String objectType, String

ruleSetName, Boolean useEntityPrefix, String ruleAppName)

The method’s arguments will need to be defined with the following values:

Parameter Name Description

Event Type (String) The event type for invoking rules. This will always be will need to be
either “insert,” “update” or “delete,” depending on what your rule is
doing

entityId (String) The unique Salesforce identifier for the root object in the request. This
is a property available on all Salesforce objects and be accessed with:
“entityName.Id”

objectType (String) The Salesforce object type of the root object in the request. For
example, if running rules against an Account entity, this will need to be
set to a string value of “Account”.

ruleSetName (String) The name of an explicit Rule Set to call as the entry point for rule
execution.

useEntityPrefix (Boolean) If set to true, the DecisionClient will append the entity label to the
supplied rule set name. For example, if you pass in a ruleSetName of
“DefaultRules” and set useEntityPrefix to true, the effective
ruleSetName name would be “AccountDefaultRules”

ruleAppName (String)
(Optional)

Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button. If you do not
wish to override your Custom Setting, pass “null” here, as displayed in
the example above.

The DecisionClient will always return a JSON string; a serialized version of the DecisionClientResponse

object. Once you have received it back as a string, you will need to deserialize it to access its properties.

The available properties on the DecisionClientResponse are:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 58 of 85

Property Name Description

IsSuccess (Boolean) Denotes whether or not rules successfully ran with no errors.

Notifications
(List<NotificationMessage>)

Provides a list of all notification message returned by rule execution.
Each NotifactionMessage has 2 properties on it:

• Type (Integer): The notification type is an integer that maps to
a Salesforce notification type. 0 maps to Informational, 1 to
Success, 2 to Warning, and 3 to Error.

• Message (String): The notification text

Errors(List<ErrorMessage>) Provides a list of all errors encountered during rule execution. These
differ from errors thrown by the rule application itself, which are instead
added to the Notifications list as NotificationMessages of type Error.
Errors added into the Errors list are strictly errors encountered during
rule execution runtime.

Each ErrorMessage has 2 properties:

• Source (String): At what point during runtime the error was
thrown

• Message (String): The error text

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 59 of 85

4 Executing Rules from Triggers

As of v5.5.1, the InRule for Salesforce App supports the execution of rules from Update triggers with a

number of limitations. For a full list of these limitations, references the Known Issues and Limitations of

Executing Rules from Triggers section below.

To emphasize, only After Update and After Insert triggers are supported. Due to Salesforce’s

enforcement of all external service methods running asynchronously, trigger execution and persistence to

the Salesforce database will always complete before rule execution has had time to finish, thus

preventing the ability to execute rules on the “in-progress” entity image before it has been persisted. As

an extension of this limitation, no entity image rollbacks can occur as a result of any validation done

during or after the rule execution process.

Adding a Rule Execution Trigger

To define a rule-executing trigger, create a new trigger on the entity of choice. The following example will

use Account:

Next, all rule executing triggers must contain the boilerplate wrapper around their code defined below.

This is required to prevent endless recursions of triggers calling rules which then update fields on the

entity image, which would then re-invoke the Update trigger.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 60 of 85

All operations, including calls to the rule execution service, will be contained within the If

(!System.isFuture()) block.

All triggers require defining whether you will be operating on the pre or post entity image (old/new,

respectively). As we can only operate on the post image, we’ll be using Trigger.new:

At this point, the only remaining required component is to call the rule execution service. To call the rule

execution service from a trigger, invoke the inrule.DecisionClient.executeRulesFromTrigger method and

pass the appropriate parameters:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 61 of 85

The parameters for calling executeRulesFromTrigger, in order they fit into the signature:

Parameter Name Description

Event Type The event type for invoking rules. This will always be ‘update’.

entityId The unique Salesforce identifier for the root object in the request. This
follows the naming convention of: “entityName.Id”

objectType The Salesforce object type of the root object in the request

ruleSetName The name of an explicit Rule Set to call as the entry point for rule
execution.

useEntityPrefix If set to true, the DecisionClient will append the entity label to the
supplied rule set name. For example, if you pass in a ruleSetName of
“DefaultRules” and set useEntityPrefix to true, the effective
ruleSetName name would be “AccountDefaultRules”

ruleAppName (optional) Optional. Defining and passing a RuleAppName here allows you to
override the default Rule App Name defined in your Custom Setting
created during initial configuration for this specific button. If you do not
wish to override your Custom Setting, pass “null” here, as displayed in
the example above.

entityImage (optional) Optional. Defining and passing an entity image allows you to capture
the entity image at time of trigger execution to ensure its state for rule
execution, whereas leaving it out will require the execution to query
Salesforce to get the current entity state, which may differ at that point
from its state when trigger execution began due to the asynchronous
nature of trigger execution.

Passing an entity image requires you first to serialize it into a JSON
string. An example of this can be found in the screenshot below.

If you do not wish to pass the entity image, you do not need to define it
as null like with the ruleAppName. You can simply leave it out of the
execution method signature altogether.

An example of serializing and passing an entity image:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 62 of 85

At this point, all required components are set. Any operations you wish to include before/after the

invocation of the rule execution service can be added at the points denoted below:

It’s important to note that any custom code written after the rule execution service has been called must

not have any dependencies on outcomes of rule execution, as rule execution will be operating

asynchronously, and trigger execution will continue and likely finish well before rule execution does.

Known Issues and Limitations of Executing Rules from Triggers

Currently, there are a number of known issues and limitations with executing rules from triggers:

• Currently, only After Update and After Insert triggers are supported. Due to Salesforce’s

enforcement of all external service methods running asynchronously, trigger execution and

persistence to the Salesforce database will always complete before rule execution has had time

to finish, thus preventing the ability to execute rules on the “in-progress” entity image before it

has been persisted. As an extension of this limitation, no entity image rollbacks can occur as a

result of any validation done during or after the rule execution process.

• Due to the asynchronous nature of trigger execution, the trigger will not wait on a response from

the rule execution service before continuing with any additional code contained within it.

Therefore, you cannot rely on having a rule response at any point during trigger execution, even

if your code relying on it comes after your call to the execution service. It is not recommended to

have any code in your trigger that relies on any data contained in the rule response.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 63 of 85

• As a result of triggers’ asynchronous nature, automatic data refresh on a record page as a result

of rule execution is not supported in Classic view, since the page has no way of knowing when

rule execution has completed. Notifications will still display once rule execution completes, but

the page will have to be manually refreshed by a user for them to be able to see any updates to

the record itself.

• Automatic data refresh on record pages is supported in Lightning, however, it requires giving all

users that will be initiating triggers that execute rules Read permissions to the InRule_Event

platform event. This can be done in two ways, both of which are explained in the below section

Adding Permissions to InRule Platform Event

• Due to the fact that triggers execute asynchronously and Formula fields on entities are calculated

and persisted asynchronously as well, any rules you attempt to execute from a trigger that make

use of a Formula field will be caught in a race condition between the Formula field being

calculated and persisted to the database and the rule execution service querying Salesforce to

fetch the currently persisted value of that field. If persistence for the Formula field has not yet

completed by the time the rule execution service reaches that point, it will pull down an out of

date value for that field and your rules will execute using the wrong value. Therefore, it is strongly

recommended that you do not execute rules that act on Formula fields from triggers. While there

is a possibility for it to work correctly, there is a high chance for unexpected behavior to occur

and there is no means of controlling whether it will work properly or not on any given execution of

that ruleset from a trigger.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 64 of 85

Adding Permissions to InRule Platform Event

Displaying notifications and refreshing the entity form after rules are run from a trigger relies on a

Salesforce Platform Event that is installed as part of the InRule package. However, by default, most

Salesforce default user profiles do not have read access to Platform Events. In order for notifications to

be displayed and data to be properly refreshed on a record page after rule execution via trigger,

you must give your users read access to the InRule_Event platform event.

There are 2 methods of doing this, both with their own advantages and disadvantages. Which approach is

best is ultimately dependent on the circumstances of your organization.

Add Platform Event Permissions via Editing Profiles

The first way of giving the needed permissions to your users is by editing their Profiles. In Salesforce, all

users have an assigned Profile that defines their permissions in the environment. Granting the needed

permissions to your users through this method can be as simple as editing the profile permissions of the

user types that will be setting off your trigger(s). This approach has some pros and cons.

Pros:

• Makes changes to entire profiles rather than specific users, meaning once it is done, all that will

need to be done for future users is to assign them to a profile with these permissions already

granted and they’ll be set

• If you are already using predominately custom/cloned Salesforce profiles in your environment,

making this change is very quick, easy, and doesn’t require any future overhead.

Cons:

• Cannot be accomplished with default profiles, which mandates cloning all of your profiles if your

users are using predominately default profiles.

• Migrating all users from default profiles to new profile types can be highly time-intensive

depending on the size of your org.

To do this approach, a user with system admin permissions must login to Salesforce and go to Setup.

From there, search for Profiles:

Once you’ve navigated to the Profiles page, select the profile you wish to edit. For this example, we’ll be

granting the necessary permission to Standard Users

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 65 of 85

Once on that profile’s page, select Edit:

Scroll down until you see the “Platform Event Permissions” header:

Check the “Read” checkbox, then scroll to the bottom of the page and press Save.

Repeat this process as needed for all profile types that need to be able to initiate rule executing triggers.

If the Read checkbox is greyed out for you and you can’t select it, this means you’re trying to edit a

default Salesforce profile. Salesforce has several “default” profile types that are commonly used; the

Standard User profile used in the example above is one such default profile. Unfortunately, Salesforce

default profiles cannot be edited. This means that if you have users that will be setting off your trigger(s)

that use default profile types, you will have to clone that profile, move your users from the default

Salesforce profile over to the clone of it, and add the permission on the new profile clone.

To clone a profile, navigate to that profile’s detail page as above, but instead of clicking “Edit,” click

“Clone.”

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 66 of 85

Name your new profile appropriately:

Hit save. Your new profile clone has been created. You should now be able to follow the steps above to

add the appropriate Platform Event permission.

Once that’s done, you need to move your users from the original profile over to the clone.

You will need to repeat this process for every profile type in your organization that needs UI updates

when triggers run

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 67 of 85

Add Platform Event Permissions via InRule User Permission Set

The alternative approach to granting the necessary platform event to your users is to apply the InRule

User Permission Set that is installed as a part of the InRule Salesforce package. This approach has its

own pros and cons:

Pros:

• The InRule User Permission Set comes pre-installed and pre-configured with the InRule

Salesforce package, making the only required step being to assign the permission set to the

appropriate users

Cons:

• Permission Sets must be assigned to specific users, rather than profiles. This means that anytime

a new user is created, the permission set must be independently added to that user, creating user

management overhead. Managing this may not be viable within a large organization.

To add users to the InRule User Permission Set, go to Setup and search for Permission Set:

Find and select InRule_User_Permissions:

Select “Manage Assignments”

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 68 of 85

Select “Add Assignments”

You’ll be presented with a list of all users in your environment. You can select all users that will need the

ability to initiate rule executing triggers. Once you’ve selected all the relevant users, you can select

“Assign,” and the permission set will be assigned to all of those users.

These users will now be able to see UI updates when rules are run from triggers.

5 Executing Rules from Lightning Flow

If you need to integrate rules with more complex process automation, rules can also be run from Lightning

Flow. The InRule integration with Flow lets you run rules against a particular entity record, and receive

back the status and notifications from rule execution.

To run rules from a flow, you will need to add an ‘Action’ element to your flow. You can find the InRule

action by searching for ‘Run Rules’ in the search box. The display name will be ‘Run Rules’ and the ID

will be apex-inrule__DecisionClient

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 69 of 85

When adding the action, you will need to fill in the following required parameters

Parameter Name Description

Entity ID (String) The unique Salesforce identifier for the root object in the request. If
running a flow from an object page, you can configure this value to be
passed in to an input variable

Object Type (String) The Salesforce object type of the root object in the request. For
example, if running rules against an Account entity, this will need to be
set to a string value of “Account”.

Rule App Name (String) The name of the InRule Rule App that contains the rule set to run

Rule Set Name (String) The name of an explicit Rule Set to call as the entry point for rule
execution.

Use Entity Prefix (Boolean) Typically set to false. If set to true, the DecisionClient will append the
entity label to the supplied rule set name. For example, if you pass in a
ruleSetName of “DefaultRules” and set useEntityPrefix to true, the
effective ruleSetName name would be “AccountDefaultRules”

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 70 of 85

This action has three outputs

Output Name Description

Notifications (Apex-Defined
collection)

Includes notifications fired from rules during execution. This output can
be assigned to a resource variable of the same type for use in
subsequent steps. The Apex class for this collection is
‘inrule__NotificationMessage’. This class has the following properties:

• Type: integer value representing notification type. 0 for Info, 1
for Warning, and 2 for Error

• Message: string value containing the notification text

Errors (Apex-Defined
collection)

Includes any errors that prevent rule execution from completing. This
output can be assigned to a resource variable of the same type for use
in subsequent steps. The Apex class for this collection is
‘inrule__NotificationMessage’. This class has the following properties:

• Message: string value containing text of the error

• Source: string value containing the error source

Is Success (Boolean) If rules are not able to be executed for any reason, this value will be set
to true. If true, additional error information will be available in the ‘Errors’
output collection

The following is an example of what a Flow using rules might look like. You can do other things with the

output from the Apex action, but this demonstrates a common use case, displaying rule notifications to

the user. The flow starts with Apex action, assigns the output collections to variables, loops over the

notifications to build a single string containing all notifications, and then outputs the value to the screen

Here the Notifications and Errors output are assigned to dedicated resource variables, so that they can be

looped over later

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 71 of 85

When looping through the notifications, a decision checks the notification type integer to determine what

text to prefix the message with.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 72 of 85

The combined notification text value is then displayed on the screen

Appendix F: Azure App Service Plan Configuration

Azure App Service Plan Overview

The Salesforce Rule Execution Azure App Service service runs on an Azure App Service Plan. The ARM

Template deployment process outlined in Section 3.3.2: Rule Execution App Service for Salesforce will,

by default, automatically deploy an App Service Plan for you.

This App Service Plan will be deployed to the subscription and resource group provided during the

deployment process. Additionally, the plan will be configured with a “F1” (Free) pricing tier, but this can be

increased based on your scaling and configuration needs.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 73 of 85

Should you wish to use a pre-existing Azure App Service Plan rather than have a new one created for

you, a few configuration steps within the ARM template itself are necessary.

Configuring the ARM Template to Use an Existing Azure App Service

1: Locate azuredeploy.parameters.json

The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined in

Section 3.3.2: Rule Execution App Service for Salesforce

2: Populate “appServicePlanName” parameter

Open the file in your text editor of choice. First, populate the “appServicePlanName” parameter. Set the

value equal to the name of your app service plan.

3: Create “createOrUpdateAppServicePlan” parameter

Next, just below the “appServicePlanName” parameter you will add an additional parameter called

“createOrUpdateAppServicePlan” Detailed below (Note, be sure to add the pictured comma

immediately following the first bracket after the “appServicePlanName”preceding parameter):

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 74 of 85

4: Create “servicePlanResourceGroupName” parameter

Lastly, we need to add a parameter to inform the ARM template what resource group your App Service

Plan is in. Create the “servicePlanResourceGroupName” parameter as shown below and define the value

as the name of the resource group your App Service Plan exists in.

5: Save azuredeploy.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section 3.3.2:

Rule Execution App Service for Salesforce as normal; your rule execution app service will now deploy to

the App Service Plan you defined in the steps above

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 75 of 85

Appendix G: Azure Application Insights Configuration

Azure App Service Plan Overview

For improved logging capabilities, the Salesforce Rule Execution Service is configured to use an Azure
App Insights resource as a logging sink in addition to the logging the App Service itself already has. ARM
Template deployment process outlined in Section 3.3.2: Rule Execution App Service for Salesforce will,
by default, automatically deploy an App Insights resource for you.

Should you wish to use a pre-existing Azure App Insights resource rather than have a new one created
for you, a few configuration steps within the ARM template itself are necessary.

Configuring the ARM Template to Use an Existing App Insights resource

1: Locate InRule.Dynamics.Service.parameters.json

The ARM template parameters file is located in the RuleExecutionAzureService folder as, defined
in Section 3.3.2: Rule Execution App Service for Salesforce

2: Populate “appInsightsInstrumentationKey” parameter

Open the file in your text editor of choice. First, populate
the “appInsightsInstrumentationKey” parameter at the bottom of the parameters file. Set the value
equal to the instrumentation key of your App Insights resource.

3: Create “createOrUpdateAppInsightsResource” parameter

Next, just below the “appInsightsInstrumentationKey” parameter you will add an additional parameter
called “createOrUpdateAppInsightsResource” detailed below and set its value to false:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 76 of 85

4: Save azuredeploy.parameters.json and continue deployment

Save and close the file. You can now proceed with the deployment process outlined in Section 3.3.2:
Rule Execution App Service for Salesforce as normal; your rule execution app service will now associate
the created app service with your existing app insights resource without creating a new one.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 77 of 85

Appendix H: Endpoint Override Configuration

As of version 5.5, InRule for Dynamics now supports Overriding Endpoint Configuration via Azure App

Service App Settings. This allows for the overriding of various endpoint settings configured on a rule app,

such as REST API URLs or Database Connection Strings, by setting App Settings on your execution

service App Service.

To set an endpoint override on your app service, simply navigate to your rule execution app service and

go to the Configuration view:

Select “New Application Setting”

The name of the override uses the following convention:

inrule:overrides:<YourEndpointNameHere>:<EndpointType>:<EndpointSetting>

Your endpoint name should match the name of the endpoint in the rule app you wish to override. The

available endpoint types are:

• DatabaseConnection

• MailServerConnection

• WebServerAddress

• WebServiceWsdlUri

• WebServiceMaxReceivedMessageSize

• XmlDocumentPath

• XmlSchema

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 78 of 85

• XmlSchemaValidation

• InlineTable

• InlineXmlDocument

• InlineValueList

• SqlQuery

• RestServiceRootUrl

• RestServiceAuthenticationType

• RestServiceX509CertificatePath

• RestServiceAllowUntrustedCertificates

The endpoint setting is the name of the setting to override for that Endpoint Type. Some Endpoint Types
have several Endpoint Settings; the available settings for each Endpoint Type can be read about in the
InRule support site documentation.

The value of the override App Setting would then be set to whatever value you wish to override with.

 Important: If an override type contains multiple settings, like RestServiceX509CertificatePath or

RestServiceAuthenticationType, be sure to include an App Setting for each of the settings listed in the

documentation.

Below is what a properly configured end-result would look like, using a RestServiceAuthenticationType
override as an example:

 Important: A notable exception to this format type is for the RestServiceRootUrl endpoint type. If

you wish to override a REST root URL, you will need to follow the following format instead:

inrule:overrides:<YourEndpointNameHere>:<EndpointType>

Below is what a properly configured RestServiceUrl override would look like:

Once your override is set, simply save the changes to your app service. Upon the next execution of rules,

the specified endpoint type will be overridden with the supplied value.

https://support.inrule.com/help/irSdkHelp50/overrides.htm

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 79 of 85

Appendix I: Salesforce and Rule Execution Service Event Logging

InRule Salesforce Logging

This section will highlight how to configure and view event logging for the InRule for Salesforce App.

Enable InRule for Salesforce App Logging

To enable logging from the InRule for Salesforce App, first navigate to Setup > Develop > Custom
Settings.

Once you’re in the Custom Settings page, locate the InRule custom settings object and select “Manage”

Select Edit. Here, you can configure the LoggingLevel custom setting that will define whether or not the
InRule for Salesforce App logs to Salesforce and how verbose of logs it will create. The field can be
configured with values from 0-3, with each signifying the following:

• 0 – Disables all logging

• 1 – Logs errors and a minimal amount of information on successful requests

• 2 – Logs errors, request information, rule engine notifications, and rule engine validations

• 3 -- Logs the same information as 2, but also includes JSON from the HTTP request and

response payloads

Once you have configured the LoggingLevel, select “Save.”

Viewing InRule for Salesforce App Log

After installing the InRule for Salesforce App, a new custom tab to access the InRule for Salesforce App

logs will have been added. To add it to your navigation bar, click the “+” at the end of the navigation bar.

A list of objects will appear. Select “InRule Logs”

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 80 of 85

You will be navigated to a new page displaying a list of any recent logs that may have been created. To

view a list of all logs, select “All” from the dropdown list at the top of the page and select “Go!”

You can now view all logs created by the InRule for Salesforce App. To view more information about an

individual log, you can click on the log ID to view the log details

What fields are and aren’t populated is determined by what logging level you configured.

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 81 of 85

Rule Execution Service Event Log

Event logging can be enabled in the Rule Execution App Service to monitor application events. These

logs can be tremendously useful for debugging any issues encountered with the Rule Execution Service.

Viewing Application Event Logs

To enable event logging, login to Azure and navigate to your App Service as created as a part of the

Azure deployment process detailed in Section 3.3.2: Rule Execution App Service for the Salesforce.

Once you’re looking at the overview of your app service, select Diagnose and solve problems

Select Diagnostic Tools

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 82 of 85

Select Application Events

You should see a list of all application events logged by the rule execution service, denoted with the

notification level, timestamp, event ID, source and web server. Selected an event log will cause the log

details to appear in a separate column on the right-hand side of screen.

In the event of rule service issues, error events in this log stream can be useful for debugging purposes.

For example, below is an example of an error event log in an instance where the rule service contacting

the catalog looking for a rule application that didn’t exist:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 83 of 85

Typically, the response message at the beginning of the log and the Error Information section provide the

most pertinent debugging information.

Adjusting Logging Levels

The Application Event Log can quickly become bogged down with too many logs, making finding specific

logs that you may be interested in more difficult. To cut down on excessive informational logs, the Rule

Execution Service, by default, will be deployed with a logging level of “Warn,” meaning only Warnings and

Errors will be logged. However, this can be adjusted as needed for whatever your needs may be.

To adjust your Rule Execution Service’s logging level, navigate to your App Service as created as a part

of the Azure deployment process detailed in Section 3.3.3: Rule Execution App Service for the

Salesforce.

Once you’re looking at the overview of your app service, select Application Settings in the settings

menu:

Scroll down until you see the Application settings section:

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 84 of 85

Locate the inrule:logging:level setting. Note that its value is currently set to “Warn.”

Simply change the value to the desired logging level. You may select from one of the following levels that

the Rule Execution Service leverages:

Logging Level Details

Info Logs all application events, including Informational
events that track the general flow of the
application

Warn Logs Warning and Error events. Warning events
highlight abnormal or unexpected events in the
application flow, but don’t otherwise cause
application execution to stop

Error Logs only Error events. Error events result in the
halted execution of the application’s current
activity due to a failure

InRule for Salesforce Deployment Guide

Copyright© 2020 by InRule Technology, Inc. All Rights Reserved.

CONFIDENTIAL – Not to be distributed beyond the party to which this document was originally sent.

Page 85 of 85

For more detailed, technical explanations of what is included with each logging level, please reference the

Runtime Event Log Details documentation on the support site.

Once you have configured the setting to the desired to level, press Save at the top of the page:

http://support.inrule.com/help/irSDKHelp50/runtime_event_log_details.htm

